2019新湘教版中考数学总复习教案(打印稿)

文档属性

名称 2019新湘教版中考数学总复习教案(打印稿)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2019-02-24 15:08:25

图片预览

文档简介




2019年中考数学第一轮复习教案
第一章 实数与中考
中考要求及命题趋势
1.正确理解实数的有关概念;
2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;
3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。
4.掌握实数的四则运算、乘方、开方运算以及混合运算
5.会用多种方法进行实数的大小比较。
????2019年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。
应试对策
????牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。



第一讲 实数的有关概念
【回顾与思考】
知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值
大纲要求:
使学生复习巩固有理数、实数的有关概念.
了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
会求一个数的相反数和绝对值,会比较实数的大小
画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:
有理数、无理数、实数、非负数概念;
2.相反数、倒数、数的绝对值概念;
3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。
实数的有关概念
(1)实数的组成

(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数,
(3)相反数
实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).
从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(4)绝对值

从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离
(5)倒数
实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.
【例题经典】
理解实数的有关概念
例1 ①a的相反数是-,则a的倒数是_______.
②实数a、b在数轴上对应点的位置如图所示:
则化简│b-a│+=______.
③(2006年泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.
【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.
例2.(-2)3与-23( ).
(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16
分析:考查相反数的概念,明确相反数的意义。答案:A
例3.-的绝对值是 ;-3 的倒数是 ;的平方根是 .
分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。
答案:,-2/7,±2/3
例4.下列各组数中,互为相反数的是 ( )D
A.-3与 B.|-3|与一 C.|-3|与 D.-3与
分析:本题考查相反数和绝对值及根式的概念
掌握实数的分类
例1 下列实数、sin60°、、( HYPERLINK "http://www.czsx.com.cn" )0、3.14159、-、(-)-2、中无理数有( )个
A.1 B.2 C.3 D.4
【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.






























第二讲  实数的运算
【回顾与思考】
知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。
大纲要求:
了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.了解电子计算器使用基本过程。会用电子计算器进行四则运算。
考查重点:
科学计算法;
考查实数的运算;
计算器的使用。
实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法 a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即

(4)除法
(5)乘方
(6)开方 如果x2=a且x≥0,那么=x; 如果x3=a,那么
在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.
3.实数的运算律
(1)加法交换律 a+b=b+a
(2)加法结合律 (a+b)+c=a+(b+c)
(3)乘法交换律 ab=ba.
(4)乘法结合律 (ab)c=a(bc)
(5)分配律 a(b+c)=ab+ac
其中a、b、c表示任意实数.运用运算律有时可使运算简便.
【例题经典】
例1、(宝应 )若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为
? A. 4―22 =-18 B.22-4=18
C. 22―(―4)=26 D.―4―22=-26
点评:本题涉及对正负数的理解、简单的有理数运算,试题以应用的方式呈现,同时也强调“列式”,即过程。选(A)
例2.我国宇航员杨利伟乘“神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为6.71×103千米,总航程约为(π取3.14,保留3个有效数字) ( )
A.5.90 ×105千米 B.5.90 ×106千米
C.5.89 ×105千米 D.5.89×106千米
分析:本题考查科学记数法 答案:A
例3.化简的结果是( ).
(A)-2 (B) +2 (C)3(-2) (D)3(+2)
分析:考查实数的运算。答案:B
例4.实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( ).
①b+c>0②a+b>a+c③bc>ac④ab>ac

(A)1个 (B)2个 (C)3个 (D)4个
分析:考查实数的运算,在数轴上比较实数的大小。答案:C
例5 (2018年成都市)计算:-+(-2)2×(-1)0-│-│.
【点评】按照运算顺序进行乘方与开方运算。
例5.校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.请你帮他把标语中的有关数据填上.(已知1克大米约52粒)
如果每人每天浪费1粒大米,全国13亿人口,每天就要大约浪费 吨大米
分析:本题考查实数的运算。答案:25
例7.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级……逐步增加时,楼梯的上法数依次为:1,2,3,5,8,13,21,...…(这就是著名的斐波那契数列).请你仔细观察这列数中的规律后回答:上10级台阶共有 种上法.
分析:归纳探索规律:后一位数是它前两位数之和
答案:89
例8.观察下列等式(式子中的“!”是一种数学运算符号)
1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,
计算:= .
分析:阅读各算式,探究规律,发现100!=100*99*98!答案:9900

第二章 代数式与中考
中考要求及命题趋势
掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;
2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;
3、熟练运用提公因式法及公式法进行分解因式 ;
4、了解分式的有关概念式的基本性质;
5、熟练进行分式的加、减、乘、除、乘方的运算和应用。
2019年中考整式的有关知识及 整式的四则运算仍然会 以填空 、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题 中去进行考查 数与似的应用题 将是今后中考的一个热点。分式 的概念及 性质,运算仍是考查 的重点。特别注意 分式的应用题 ,即要 熟悉背景 材料,又要从实际问题中抽象出数学模型。
应试对策
掌握整式 的有关概念及 运算法则,在运算过程中注意 运算顺序,掌握运算规律,掌握乘法 公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。要掌握并灵活运用分式的基本性质,在通分和约分 时 都要注意分解因式知识的应用。化解 求殖题,一要注意 整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。

第一讲 整 式
【回顾与思考】

知识点
代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。
大纲要求
了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;
理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;
掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;
能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;
掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。
考查重点
1.代数式的有关概念.
(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.
(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.
求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
(3)代数式的分类
2.整式的有关概念
(1)单项式:只含有数与字母的积的代数式叫做单项式.
对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
(2)多项式:几个单项式的和,叫做多项式
对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析
(3)多项式的降幂排列与升幂排列
把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列
把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,
给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.
(4)同类项
所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.
要会判断给出的项是否同类项,知道同类项可以合并.即 其中的X可以代表单项式中的字母部分,代表其他式子。
3.整式的运算
(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:
(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.
(ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.
(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:

多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.
多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
遇到特殊形式的多项式乘法,还可以直接算:

(3)整式的乘方
单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。
单项式的乘方要用到幂的乘方性质与积的乘方性质:

多项式的乘方只涉及

【例题经典】
代数式的有关概念
例1、(日照市)已知-1<b<0, 0<a<1,那么在代数式a-b、a+b、a+b2、a2+b中,对任意的a、b,对应的代数式的值最大的是( )
(A) a+b (B) a-b (C) a+b2 (D) a2+b
评析:本题一改将数值代人求值的面貌,要求学生有良好的数感。选(B)
同类项的概念 (?http:?/??/?www.czsx.com.cn?)
例1 若单项式2am+2nbn-2m+2与a5b7是同类项,求nm的值.
【点评】考查同类项的概念,由同类项定义可得 解出即可
例2(宝应)一套住房的平面图如右图所示,其中卫生间、厨房的面积和是( )
A.4xy B. 3xy C.2xy D.xy
评析:本题是一道数形结合题,考查了平面图形的面积的计算、合并同类项等知识,同时又隐含着对代数式的理解。选(B)
幂的运算性质 (?http:?/??/?www.czsx.com.cn?)
例1(1)am·an=_______(m,n都是正整数);
(2)am÷an=________(a≠0,m,n都是正整数,且m>n),特别地:a0=1(a≠0),a-p=(a≠0,p是正整数);
(3)(am)n=______(m,n都是正整数);(4)(ab)n=________(n是正整数)
(5)平方差公式:(a+b)(a-b)=_________.(6)完全平方公式:(a±b)2=__________.
【点评】能够熟练掌握公式进行运算.
例2.下列各式计算正确的是( ).
(A)(a5)2=a7 (B)2x-2= (c)4a3·2a2=8a6 (D)a8÷a2=a6
分析:考查学生对幂的运算性质及同类项法则的掌握情况。答案:D
例3.下列各式中,运算正确的是 ( )
A.a2a3=a6 B.(-a+2b)2=(a-2b)2
c.(a+b≠O) D.
分析:考查学生对幂的运算性质 答案:B
例4、(泰州市)下列运算正确的是
A. ; B.(-2x)3=-2x3 ;
C.(a-b)(-a+b)=-a2-2ab-b2 ;
D.
评析:本题意在考查学生幂的运算法则、整式的乘法、二次根式的运算等的掌握情况。选 (D)
整式的化简与运算 (?http:?/??/?www.czsx.com.cn?)
例5 计算:9xy·(-x2y)= ;
(江苏省)先化简,再求值:
[(x-y)2+(x+y)(x-y)]÷2x其中x=3,y=-1.5.
【点评】本例题主要考查整式的综合运算,学生认真分析题目中的代数式结构,灵活运用公式,才能使运算简便准确.













第二讲 因式分解与分式

【回顾与思考】


因式分解
〖知识点〗
  因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
〖大纲要求〗
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
〖考查重点与常见题型〗
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式.
(2)运用公式法,即用
写出结果.
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.
(5)求根公式法:如果有两个根X1,X2,那么

【例题经典】
掌握因式分解的概念及方法
例1、分解因式:
①x3-x2=_______________________;
②(绵阳市)x2-81=______________________;
③(泉州市)x2+2x+1=___________________;
④a2-a+=_________________;
⑤(湖州市)a3-2a2+a=_____________________.
【点评】运用提公因式法,公式法及两种方法的综合来解答即可。
例2.把式子x2-y2-x—y分解因式的结果是 ..
分析:考查运用提公因式法进行分解因式。答案:(x+y)(x-y-1)
例3.分解因式:a2—4a+4=
分析:考查运用公式法分解因式。答案:(a-2)2


分 式
知识点:
分式,分式的基本性质,最简分式,分式的运算,零指数,负整数,整数,整数指数幂的运算
大纲要求:
了解分式的概念,会确定使分式有意义的分式中字母的取值范围。掌握分式的基本性质,会约分,通分。会进行简单的分式的加减乘除乘方的运算。掌握指数指数幂的运算。
考查重点与常见题型:
1.考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是( )
(A)-40 =1 (B) (-2)-1= (C) (-3m-n)2=9m-n (D)(a+b)-1=a-1+b-1
2.考查分式的化简求值。在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。注意解答有关习题时,要按照试题的要求,先化简后求值,化简要认真仔细,如:
化简并求值:
. +(–2),其中x=cos30°,y=sin90°
知识要点
1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简
2、分式的基本性质
(M为不等于零的整式)
3.分式的运算
(分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);
4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.
熟练掌握分式的概念:性质及运算
例4 (1)若分式的值是零,则x=______.
【点评】分式值为0的条件是:有意义且分子为0.
(2)同时使分式有意义,又使分式无意义的x的取值范围是( )
A.x≠-4且x≠-2 B.x=-4或x=2
C.x=-4 D.x=2
(3)如果把分式中的x和y都扩大10倍,那么分式的值( )
A.扩大10倍 B.缩小10倍 C.不变 D.扩大2倍
例5:化简()÷的结果是 .
分析:考查分式的混合运算,根据分式的性质和运算法则。答案:-
例6.已知a=,求的值.
分析:考查分式的四则运算,根据分式的性质和运算法则,分解因式进行化简。
答案:a=2-<1,原式=a-1+=3.
例7.已知|a-4|+ =0,计算的值
答案:由条件,得a-4=0且b-9=0 ∴a=4 b=9
原式=a2/b2
当a=4,6=9时,原式=16/81
例8.计算(x—y+)(x+y-)的正确结果是( )
A y2-x2 B.x2-y2 c.x2-4y2 D.4x2-y2
分析:考查分式的通分及四则运算。答案:B
因式分解与分式化简综合应用 (?http:?/??/?www.czsx.com.cn?)
例1(常德市)先化简代数式:,然后选取一个使原式有意义的x的值代入求值.
【点评】注意代入的数值不能使原分式分母为零,否则无意义.
例2、(05 河南)有一道题“先化简,再求值:,其中。”小玲做题时把“”错抄成了“”,但她的计算结果也是正确的,请你解释这是怎么回事?
点评:化简可发现结果是,因此无论还是其计算结果都是7。 可见现在的考试特别重视应用和理解。

第三讲 数的开方与二次根式

【回顾与思考】

〖知识点〗
平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、
同类二次根式、二次根式运算、分母有理化
〖大纲要求〗
1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);
2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;
3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
内容分析
1.二次根式的有关概念
(1)二次根式
式子叫做二次根式.注意被开方数只能是正数或O.
(2)最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
(3)同类二次根式
化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.
2.二次根式的性质
3.二次根式的运算
(1)二次根式的加减
二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.
(2)三次根式的乘法
二次根式相乘,等于各个因式的被开方数的积的算术平方根,即

二次根式的和相乘,可参照多项式的乘法进行.
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.
(3)二次根式的除法
二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.
〖考查重点与常见题型〗
1.考查平方根、算术平方根、立方根的概念。有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。
2.考查最简二次根式、同类二次根式概念。有关习题经常出现在选择题中。
3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。
【例题经典】
理解二次根式的概念和性质
例1 (1)(南通市)式子有意义的x取值范围是________.
【点评】从整体上看分母不为零,从局部看偶次根式被开方数为非负.
(2)已知a为实数,化简.
【点评】要注意挖掘其隐含条件:a<0.
掌握最简二次根式的条件和同类二次根式的判断方法
例2(2006年海淀区)下列根式中能与合并的二次根式为( )
A.
【点评】抓住最简二次根式的条件,结合同类二次根式的概念去解决问题.
掌握二次根式化简求值的方法要领
例3 (2006年长沙市)先化简,再求值:
若a=4+,b=4-,求.
【点评】注意对求值式子进行变形化简约分,再对已知条件变形整体代入.





第三章方程(组)与中考
中考要求及命题趋势
一元 一次方程与一元 一次方程组是初中有关方程的基础,在各地中考题 中,多数以填空 、选择和解答题的形式出现,大多考查 一元一次方程及一次方程组的概念和解法,一般占5%左右。方程和方程组的应用题是中考的必考题,考查学生建模能力和分析问题和解决问题的能力,以贴进生活的题目为主。占10%左右。
2019年中考将继续考查概念和解法这些基础知识,类型仍以选择、填空为主,也可能出现解答题,有时也会 与一次函数、一次不等式相结合出题。一元二次方程是二次函数的一种特殊 形式,两者有着密切的关系,实验区各地中考题主要以填充、选择、解答题、综合题的形式考查一元二次方程的概念、解法,一般占5%左右。2009年中考将继续以考查概念和解法为主,形式基本相同。新课标中分式方程以简化,只考查了化为一元一次方程的分式方程。大多以填空、解答题出现,以考查解法为主,一般占3%左右。2009年中考将以考查解法为主,题型仍不会变。方程和方程组的应用题是中考的必考题,近几年主要考查学生建模能力和分析问题、解决问题的能力,以贴近生活的题目为主。一般占10%左右。2009年中考仍将以生活应用题为出题方向,或者与函数综合出题。
应试对策
要弄清一元一次方程及二元一次方程组的定义,方程(组)的解(整数解)等概念。
要熟练掌握一元一次方程,二元一次方程组的解法。
要弄清一元一次方程与一次函数、一元一次不等式之间的关系。
要弄清一元二次方程的定义,ax +bx+c=0(a 0),a,b,c均为常数,尤其a不为零要切记。
要弄清一元二次方程的解的概念。
要熟练掌握一元二次方程的几种解法,如因式分解法、公式法等,弄清化一元二次方程为一元一次方程的转化思想。
要加强 一元二次方程与二次函数之间的综合的训练。
让学生理解化分式方程为整式方程的思想。
熟练掌握解分式方程的方法。
让学生学会行程、工程、储蓄、打折销售等基本类型应用题的分析。
让学生掌握生活中问题的数学建模的方法,多做一些综合性的训练。
〖知识点〗
等式及基本性质、方程、方程的解、解方程、一元一次方程、一元二次方程、简单的高次方程
〖大纲要求〗
理解方程和一元一次方程、一元二次方程概念;
理解等式的基本性质,能利用等式的基本性质进行方程的变形,掌握解一元一次方程的一般步骤,能熟练地解一元一次方程;
会推导一元二次方程的求根公式,理解公式法与用直接开平方法、配方法解一元二次方程的关系,会选用适当的方法熟练地解一元二次方程;
了解高次方程的概念,会用因式分解法或换元法解可化为一元一次方程和一元二次方程的简单的高次方程;
体验“未知”与“已知”的对立统一关系。
内容分析
1.方程的有关概念
含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).
2.一次方程(组)的解法和应用
只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.
解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.
3.一元二次方程的解法
(!)直接开平方法
形如(mx+n)2=r(r≥o)的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法.
(2)把一元二次方程通过配方化成
(mx+n)2=r(r≥o)
的形式,再用直接开平方法解,这种方法叫做配方法.
(3)公式法
通过配方法可以求得一元二次方程
ax2+bx+c=0(a≠0)
的求根公式:
用求根公式解一元二次方程的方法叫做公式法.
(4)因式分解法
如果一元二次方程ax2+bx+c=0(a≠0)的左边可以分解为两个一次因式的积,那么根据两个因式的积等于O,这两个因式至少有一个为O,原方程可转化为两个一元一次方程来解,这种方法叫做因式分解法.
〖考查重点与常见题型〗
考查一元一次方程、一元二次方程及高次方程的解法,有关习题常出现在填空题和选择题中。




第一讲 一次方程(组)及应用 (?http:?/??/?www.czsx.com.cn?)

【回顾与思考】

【例题经典】
掌握一元一次方程的解法步骤
例1 解方程:x-
【点评】按去分母、去括号、移项、合并同类项、系数化为1,五步进行
掌握二元一次方程组的解法
例2 (枣庄市)已知方程组的解为,求2a-3b的值.
【点评】将代入原方程组后利用加减法解关于a,b的方程组.
例3、(安徽)某电视台在黄金时段的2min广告时间内,计划插播长度为15s和30s的两种广告,15s广告每播1次收费0.6万元,30s广告每播1次收费1万元。若要求每种广告播放不少于2次。问:
⑴两种广告的播放次数有几中安排方式?
⑵电视台选择哪种方式播放收益较大?
点评:本题只能列出一个二元一次方程,因此需要学生对二元一次方程的解有深刻的理解。体现了“从知识立意向能力立意转变”的新命题理念。
解:(1)设15s广告播放x次,30s广告播放y次。
15x+30y=120 而x,y均为不小于2的正整数,
∴ 或
(2)方案1 4.4万元;方案2 4.2万元。
一次方程的应用
例1.下图是学校化学实验室用于放试管的木架,在每层长29 cm的木条上钻有6个圆孔,每个圆孔的直径均为2.5 cm.两端与圆孔边缘及任何相邻两孔边缘之间的距离都相等并设为X cm,则x为 ( )
A.2 B.2.15 C.2.33 D.2.36
分析:考查列一元一次方程并解方程
答案:A
例2(2006年吉林省)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市,一般缺水城市和严重缺水城市,其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市是严重缺水城市数的2倍,求严重缺水城市有多少座?
【点评】一元一次方程或二元一次方程组都可解答此题.
例4.小红家春天粉刷房间,雇用了5个工人,干了10天完成;用了某种涂料150升,费用为4800元;粉刷的面积是150m2.最后结算工钱时,有以下几种方案:
方案一:按工算,每个工30元; (1个工人干1天是一个工);
方案二:按涂料费用算,涂料费用的30%作为工钱;
方案三:按粉刷面积算,每平方米付工钱12元.
请你帮小红家出主意,选择方案 付钱最合算(最省).
分析:考查方程和方程的应用,方案一:5*10*30+4800=6300元 方案二:4800*30%=1440元,方案三:12*150=1800元
答案:方案二


















第二讲 (?http:?/??/?www.czsx.com.cn?) 一元二次方程及应用

【回顾与思考】


【例题经典】
掌握一元二次方程的解法
例1 解方程:
(1)3x2+8x-3=0;(2)9x2+6x+1=0;(3)x-2=x(x-2);(4)x2-2x+2=0
例2.用换元法解方程(x-)2-3x++2=0时,如果设x-=y,那么原方程可转化为( )D
(A)y2+3y+2=O (B)y2—3y-2=0 (C)y2+3y-2=0 (D)y2-3y+2=0
分析:考查用换元法解方程 答案:D
例3.若关于x的方程x2+px+1=0的一个实数根的倒数恰是它本身,则p的值是 .
分析:一个实数的倒数是它的本身,这个实数是±1
答案:±2
例4.关于x的一元二次方程的两根为,,则分解因式的结果为_________________________;
分析:考查一元二次方程和分解因式的综合。将x1、x2的值代入方程求出b、c
答案:(x-1)(x-2)
会判断一元二次方程根的情况
例1 不解方程判别方程2x2+3x-4=0的根的情况是( )
A.有两个相等实数根; B.有两个不相等的实数根;
C.只有一个实数根; D.没有实数根
【点评】根据b2-4ac与0的大小关系来判断
例2 已知一元二次方程x2-4x+k=0有两个不相等的实数根
(1) 求k的取值范围;
(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值. 点评:本题考查了解一元二次方程的解法、根的判别式、不等式的整数解等知识点。

一元二次方程的应用
例3 (包头市)某印刷厂1月份印刷了书籍60万册,第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?
【点评】设2、3月份平均每月的增长率为x,即60+60(1+x)+60(1+x)2=200

第三讲 (?http:?/??/?www.czsx.com.cn?) 分式方程及应用

【回顾与思考】

〖知识点〗
分式方程、二次根式的概念、解法思路、解法、增根
〖大纲要求〗
了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。
内容分析
1.分式方程的解法
(1)去分母法
用去分母法解分式方程的一般步骤是:
(i)在方程的两边都乘以最简公分母,约去分母,化成整式方程;
(ii)解这个整式方程;
(iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去.
在上述步骤中,去分母是关键,验根只需代入员简公分母.
(2)换元法
用换元法解分式方程,也就是把适当的分式换成新的未知数,求出新的未知数后求出原来的未知数.
2.二次根式方程的解法
(1)两边平方法
用两边平方法解无理方程的—般步骤是:
(i)方程两边都平方,去掉根号,化成有理方程;
(ii)解这个有理方程;
(iii)把有理方程的根代入原方程进行检验,如果适合,就是原方程的根,如果不适合,就是增根,必须舍去.
在上述步骤中,两边平方是关键,验根必须代入原方程进行.
(2)换元法
用换元法解无理方程,就是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原来的未知数.
〖考查重点与常见题型〗
  考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常出现 在选择题中另一部分习题考查完整的解题能力,习题出现在中档解答题中。
【例题经典】
理解分式方程的有关概念
例1 指出下列方程中,分式方程有( )
①=5 ②=5 ③x2-5x=0 ④+3=0
A.1个 B.2个 C.3个 D.4个
【点评】根据分式方程的概念,看方程中分母是否含有未知数.
掌握分式方程的解法步骤
例2 解方程:
(1)(成都市);
(2)(绍兴市)。
【点评】注意分式方程最后要验根。
例3.解方程:
分析:考查解分式方程 答案: x1=3,x2=4/3都是原方程的根
例4(1)、用换元法解分式方程+=3时,设=y,原方程变形为(    )
 (A)y2-3y+1=0(B)y2+3y+1=0(C)y2+3y-1=0(D)y2-y+3=0
(2)、用换元法解方程x2+8x+=23,若设y=,则原方程可化为(    )
(A)y2+y+12=0(B)y2+y-23=0(C)y2+y-12=0(D)y2+y-34=0
分式方程的应用
例5(长春市)某服装厂装备加工300套演出服,在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,求该厂原来每天加工多少套演出服.
【点评】要用到关系式:工作效率=。
例6某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料上显示:若由两队合做,6天可以完成,共需工程费用10 200元;若单独完成此项工程,甲队比乙队少用5天.但甲队每天的工程费用比乙队多300元,工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金的角度考虑,应该选择哪个工程队?为什么?
解:设甲队每天费用为a元,乙队每天费用为b元,则
(a+b)×6=10200 a-b=300解:设甲队独做需x天完成,则乙队独做(x+5)天完成.
由题意,列方程.
整理得x2-7x-30=O.解之得x1=10,x2=-3.
经检验x1'x2都是原方程的根,但x2=-3不合题意舍去.
∴甲队独做需10天完成,
乙队独做需15天完成. 解之得a=1000 b=700
所以甲队独做的费用为1000×10=10 000(元),
乙队独做的费用为700×15=10 500(元).
∵10 500>10 000.
.若从节省资金的角度考虑,应选择甲工程队.
例7为满足用水量不断增长的需求,昆明市最近新建甲、乙、丙三个水厂,这三个水厂的日供水量共计11.8万立方米,其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万立方米.
(1)求这三个水厂的日供水量各是多少万立方米?
(2)在修建甲水厂的输水管道的工程中要运走600吨土石,运输公司派出A型、B型两种载重汽车,A型汽车6辆、B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆、B型汽车6辆,分别运5次,也可把土石运完.那么每辆A型汽车、每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以标准载重量满载)
解:(1)设甲水厂的日供水量是x万立方米,则乙水厂的日供水量是3x万立方米,丙水厂的日供水量是(x/2+1)万立方米.
由题意得:x+3x+x/4+1=11.8 解得:x=2.4
答:甲水厂日供水量是2.4万立方米,乙水厂日供水量是7.2万立方米,丙水厂日供水量是2.2万立方米.
(2)每辆A型汽车每次运土石lO吨、每辆B型汽车每次运土石15吨.






















第四讲 列出方程(组)解应用题
〖知识点〗
列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型
〖大纲要求〗能够列方程(组)解应用题
内容分析
列出方程(组)解应用题的一般步骤是:
(i)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个(或几个)未知数;
(ii)找出能够表示应用题全部含义的一个(或几个)相等关系;
(iii)根据找出的相等关系列出需要的代数式,从而列出方程(或方程组);
(iv)解这个方程(或方程组),求出未知数的值;
(v)写出答案(包括单位名称).
〖考查重点与常见题型〗
考查列方程(组)解应用题的能力,其中重点是列一元二次方程或列分式方程解应用题,习题以工程问题、行程问题为主,近几年出现了一些经济问题,应引起注意

一、填空题
1.某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是
2.甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为 元和 元
3.某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a%,那么,1998年这个公司出口创汇 万美元
4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为
5.在农业生产上,需要用含盐16%的盐水来选种,现有含盐24%的盐水200千克,需要加水多少千克?
解:设需要加水x千克根据题意,列方程为 ,解这个方程,得 答: .
6.某电视机厂1994年向国家上缴利税400万元,1996年增加到484万元,则该厂两年上缴的利税平均每年增长的百分率
7.某种商品的进货价每件为x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%(相对于进价),则x= 元
8.一个批发与零售兼营的文具店规定,凡是一次购买铅笔301支以上(包括301支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小王来购买铅笔,如果给学校初三年级学生每人买1支,则只能按零售价付款,需用(m2-1)元(m为正整数,且m2-1>100);如果多买60支,则可以按批发价付款,同样需用(m2-1)元.
(1)设这个学校初三年级共有x名学生,则(a)x的取值范围应为
(b)铅笔的零售价每支应为 元,批发价每支应为 元
(用含x,m的代数式表示)
(2)若按批发价每购15支比按零售价每购15少付款1元,试求这个学校初三年级共有多少名学生,并确定m的值。
二.列方程解应用题
某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,原计划每天销售多少台?
我省1995年初中毕业会考(中考)六科成绩合格的人数为8万人,1997年上升到9万人,求则两年平均增长的百分率(取=1.41)
甲、乙两队完成某项工作,甲单独完成比乙单独完成快15天,如果甲单独先工作10天,再由乙单独工作15天,就可完成这项工作的,求甲、乙两人单独完成这项工作各需多少天?
某校校长暑期将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待”,乙旅行社说:“包括校长在内全部按全票价的6折优惠(即按全票价的60%收费),若全票为240元
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式)
(2)当学生数为多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠?
现有含盐15%的盐水内400克,张老师要求将盐水质量分数变为12%。某同学由于计算失误,加进了110克的水,请你通过列方程计算说明这位同学加多了,并指出多加了多少克的水?
甲步行上午6时从A地出发于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙在什么时间追上甲的?
中华中学为迎接香港回归,从1994年到1997年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树棵数的年增长率相同,那么该校1997年植树多少棵?
要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am,另三边用竹篱笆围成,如图,如果篱笆的长为35m,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a对题目的解起着怎样的作用?
永盛电子有限公司向工商银行申请了甲乙两种款,共计68万元,每年需付出利息8.42万元,甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?
10.小明将勤工俭学挣得的100元钱按一年期存入少儿银行,到期后取出50元用来购买学习用品,剩下的50元和应得的利息又全部按一年期存入。若存款的年利率保持不变,这样到期后可得本金和利息共66元,求这种存款的年利率。
11.某公司向银行贷款40万元,用来生产某种新产品,已知该贷款的年利率为15%(不计复利,即还贷前每年息不重复计息),每个新产品的成本是2.3元,售价是4元,应纳税款为销售额的10%。如果每年生产该种产品20万个,并把所得利润(利润=销售额-成本-应纳税款)用来归还贷款,问需几年后能一次还清?
12.某车间在规定时间内加工130个零件,加工了40个零件后,由于改进操作技术,每天比原来计划多加工10个零件,结果总共用5天完成任务。求原计划每天加工多少个零件?
13.东西两车站相距600千米,甲车从西站、乙车从东站同时同速相向而行,相遇后,甲车以原速,乙车以每小时比原速快10千米的速度继续行驶,结果,当乙车到达西站1小时后,甲车也到达东站,求甲、乙两车相遇后的速度?
14.一个水池有甲、乙两个进水管,单独开放甲管注满水池比单独开放乙管少用10小时。如果单独开放甲管10小时后,加入乙管,需要6小时可把水池注满。问单独开放一个水管,各需多少小时才能把水池注满?
15.某商店1995年实现利税40万元(利税=销售金额-成本),1996年由于在销售管理上进行了一系列改革,销售金额增加到154万元,成本却下降到90万元,(1)这个商店利税1996年比1995年增长百分之几?
(2)若这个商店1996年比1995年销售金额增长的百分数和成本下降的百分数相同,求这个商店销售金额1996年比1995年增长百分之几?
16.甲、乙两辆汽车同时从A地出发,经C地去B地,已知C地离B地180千米,出发时甲车每小时比乙车多行驶5千米。因此,乙车经过C地比甲车晚半小时,为赶上甲车,乙车从C地起将车速每小时增加10千米,结果两从同时到达B地,求(1)甲、乙两从出发时的速度;(2)A、B两地间的距离.
17.某项工程,甲、乙两人合作,8天可以完成,需费用3520元;若甲单独做6天后,剩下的工程由乙独做,乙还需12天才能完成,这样需要费用3480元,问:(1)甲、乙两人单独完成此项工程,各需多少天?
(2)甲、乙两人单独完成此项工程,各需费用多少元?
18.某河的水流速度为每小时2千米,A、B两地相距36千米,一动力橡皮船从A地出发,逆流而上去B地,出航后1小时,机器发生故障,橡皮船随水向下漂移,30分钟后机器修复,继续向B地开去,但船速比修复前每小时慢了1千米,到达B地比预定时间迟了54分钟,求橡皮船在静水中起初的速度.








第四章 不等式与不等式组与中考
中考要求及命题趋势
1.不等式,一元 一次不等式(组) 及其解集的概念。
2.不等式的基本性质,一元 一次不等式(组)解法以及解集的数轴表示。
3.解决不等式(组)的应用题,要求学生会将应用题里关于‘已 知 量 ’‘未知 量 ’之间的关系用明确的不等式关系表示出来,并注意 应用题中字母 所表示的实际意义。
2019年的中考将会以填空和选择的方式考查不等式的基本性质和解集概念,解答题是解不等式(组),并把解集在数轴上表示出来。不等式的应用题还是热点考查内容,考查可能与日常生活相联系,也可能与其他章节内容,如方程、函数及几何内容相结合。
应试对策
解不等式(组)是本节的重点,而不等式的性质是解不等式的基础,在复习本节 时 ,首先要强化三条性质的应用顺练,切忌不等式两边同乘 (除)含 字母的代数式(即正负不明的代数式);其次注意 数 形 结合的方法,即充分利用数轴,关于不等式(组)的应用题,要通过建模训练,学会找出实际问题中的不等关系,并能在不等式的解集中找出符合题意的答案,还要注意与其他类型的应用题结合起来训练。
第一讲 (?http:?/??/?www.czsx.com.cn?) 一元一次不等式(组)及应用
【回顾与思考】

〖知识点〗
不等式概念,不等式基本性质,不等式的解集,解不等式,不等式组,不等式组的解集,解不等式组,一元一次不等式,一元一次不等式组。
大纲要求
1.理解不等式,不等式的解等概念,会在数轴上表示不等式的解;
2.理解不等式的基本性质,会应用不等式的基本性质进行简单的不等式变形,会解一元一次不等式;
3.理解一元一次不等式组和它的解的概念,会解一元一次不等式组;
4.能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题。
内容分析
一元一次不等式、一元一次不等式组的解法
(1)只含有一个未知数,并且未知数的次数是1,系数不为零的不等式,叫做一元一次不等式.
解一元一次不等式的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.要特别注意,不等式的两边都乘以(或除以)同一个负数,要改变不等号的方向.
(2)解一元一次不等式组的一般步骤是:
(i)先求出这个不等式组中各个一元一次不等式的解集;
(ii)再利用数轴确定各个解集的公共部分,即求出了这个一元一次不等式组的解集.
考查重点与常见题型
考查解一元一次不等式(组)的能力,有关试题多为解答题,也出现在选择题,填空题中。
【例题经典】
不等式的性质及运用
例1 下列四个命题中,正确的有( )
①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;
③若a>b,则-2a<-2b;④若a>b,则2a<2b.
A.1个 B.2个 C.3个 D.4个
【分析】注意观察前后两个式子的变化,想一想与不等式的性质是否相符.

会解一次不等式,并理解解集用数轴表示的意义
例2 (嘉兴市)解不等式x>x-2,并将其解集表示在数轴上.

【点评】步骤类似于解一元一次方程,但要注意不等号方向的变化.
例3、关于x的不等式的解集如图所示,则a的取值是( )
考查内容:不等式的解集与数轴上所表示的数集之间的对应。解为-1
例4. 不等式2x+1≥5的解集在数轴上表示正确的是 ( )

分析:考查不等式求解和用数轴表示其解集。注意取实心点的条件,不等式的解为x≥2 答案:D
例5.如图,数轴上表示的一个不等式组的解集,这个不等式组的整数解是__________。
分析:考查不等式求解和用数轴表示其解集。注意取实心点的条件
答案:-1,0
例6.函数y=中,自变量x的取值范围是( )
A.x≠2 B.x≥2 C.x≤2D.x>2
分析:通过不等式的形式2算术平方根中被开方数的非负性。答案:B
例7.如果最简二次根式与是同类根式,那么使有意义的x的取值范围是 ( )
A.x≤10 B.x≥10 C.x<1O D.x>10
分析:考查同类根式的意义及二次根式有意义的条件。答案:A
借助数轴,解一元一次不等式组
例8 (淄博市)解不等式组,并在数轴上表示解集.

【点评】先求每个不等式的解集,再借助数轴求不等式组的解集.
例9.不等式组的最小整数解是 ( )
A.0 B.1 C.2 D.-1
分析:整数包括正整数、负整数和0答案:A
例10.不等式组 的整数是( )
(A) -1,0,1 (B) -1,1 (C) -1,0 (D) 0,1答案:C
会列不等式(组)解应用题 (?http:?/??/?www.czsx.com.cn?)
例11(广东省)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果.求这一箱苹果的个数与小朋友的人数.
【点评】从题意寻求两个不等关系,列出不等式组,求出解集,并取正整数解.
例10、(05广东茂名市)今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨;
⑴该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来
⑵若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案?使运费最少?最少运费是多少元?
考查内容:根据具体问题中的数量关系列出一元一次不等式组解决实际问题。
解:设安排x辆甲种货车,(10-x)辆乙种货车
得,方案1:甲车5辆,乙车5辆,费用16500元;方案2:甲车6辆,乙车4辆,费用16200元;方案3:甲车7辆,乙车3辆,费用17900元;
例12.我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元则六折优惠.且甲乙两厂都规定:一次印刷数量至少是500份.
(1)分别求两个印刷厂收费y(元)与印刷数量x(份)的函数关系,并指出自变量x的取值范围.
(2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书。那么应当选择哪一个厂?需要多少费用?
分析:本题主要考查一次函数、不等式等知识,考查运算能力及分析和解决实际问题
的能力.
解:(1)y甲=1.2x+900(元)x≥500(份),且x是整数
y乙=1.5x+540(元) x≥500(份),且x是整数
(2)
若y甲>y乙,即1.2x+900>1.5x+540∴x<1200
若y甲=y乙,即 1.2x+900=1.5x+540∴x=1200
若y甲1200
当x=2000时,y甲=3300
答:当500≤x<1200份时,选择乙厂比较合算;
当x=1200份时,两个厂的收费相同;
当x>1200份时,选择甲厂比较合算;
所以要印2000份录取通知书,应选择甲厂,费用是3300元.
















第二讲 (?http:?/??/?www.czsx.com.cn?) 不等式(组)与方程(组)的应用
【例题经典】
例1 (内江市)内江市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成.从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成.如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元.
(1)甲、乙两公司单独完成这项工程各需多少天?
(2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天?
【点评】(1)利用方程组解决;(2)利用不等式解决,结合实际取值.
例2 (潍坊市)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤?
【分析】本题与学生生活实际联系紧密,是一道很好的列不等式组应用题,解决本题应注意路口人数与总人数之间的关系.
例3 华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活.现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费.经核算,参加两家旅行社费用正好相等.
(1)该校参加科技夏令营的学生共有多少人?
(2)如果又增加了部分学生,学校应选择哪家旅行社?
【点评】方程与不等式的综合应用,注意取值与实际生活要相符










第五章函数与中考
中考要求及 命题趋势
函数是数形结合的重要体现,是每年中考 的必考 内容,函数的概念主要用选择、填空 的形式考查 自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右。一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右。反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3——6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中。要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题。会求一元二次方程的近似值。
2019年依然主要考查自变量的取值范围及自变量与因变量之间的变化图像为主。一次函数的图像和性质;在实际问题中考查对反比例函数的概念及性质的理解。将继续考查二次函数,重点关注它与代数、几何知识的综合应用,加强二次函数的实际应用。
应试对策
理解函数的概念和平面直角坐标系中某些点的坐标特点。
要进行自变量与因变量之间的变化图像识别的训练,真正理解图像与变量的关系。
掌握一次函数的一般形式和图像
掌握一次函数的增减性、分布象限,会作图
明确反比例函数的特征图像,提高实际应用能力。
牢固掌握二次函数的概念和性质,注重在实际情景中理解二次函数的意义,关注与二次函数相关的综合题,弄清知识之间的联系。
















第一讲 变量之间的关系与平面直角坐标系

【回顾与思考】

〖知识点〗
平面直角坐标系、常量与变量、函数与自变量、函数表示方法
〖大纲要求〗
1.了解平面直角坐标系的有关概念,会画直角坐标系,能由点的坐标系确定点的位置,由点的位置确定点的坐标;
2.理解常量和变量的意义,了解函数的一般概念,会用解析法表示简单函数;
3.理解自变量的取值范围和函数值的意义,会用描点法画出函数的图像。
内容分析
1.平面直角坐标系的初步知识
在平面内画两条互相垂直的数轴,就组成平面直角坐标系,水平的数轴叫做x轴或横轴 (正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点.这个平面叫做坐标平面.
x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:
由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说x是自变量, y是x的函数.
用数学式子表示函数的方法叫做解析法.在用解析式表示函数时,要考虑自变量的取值范围必须使解析式有意义.遇到实际问题,还必须使实际问题有意义.
当自变量在取值范围内取一个值时,函数的对应值叫做自变量取这个值时的函数值.
3.函数的图象
把自变量的一个值和自变量取这个值时的函数值分别作为点的横坐标和纵坐标,可以在坐标平面内描出一个点,所有这些点组成的图形,就是这个函数的图象.也就是说函数图象上的点的坐标都满足函数的解析式,以满足函数解析式的自变量值和与它对应的函数值为坐标的点都在函数图象上.
知道函数的解析式,一般用描点法按下列步骤画出函数的图象:
(i)列表.在自变量的取值范围内取一些值,算出对应的函数值,列成表.
(ii)描点.把表中自变量的值和与它相应的函数值分别作为横坐标与纵坐标,在坐标平面内描出相应的点.
(iii)连线.按照自变量由小到大的顺序、用平滑的曲线把所描各点连结起来.
【例题经典】
了解平面直角坐标系的意义,会判断点的位置或求点的坐标
例1、在平面直角坐标系中,点(-1,-2)所在的象限是 ( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
分析:考查已知的点的坐标,确定它的象限 答案:D
例2 .如果代数式有意义.那么直角坐标系中点A(a、b)的位置在( ).(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析:要使根式有意义,a和b都要大于0 答案: A
例3(1)(益阳市)在平面直角坐标系中,点A、B、C的坐标分别为A(-2,1),B(-3,-1),C(1,-1).若四边形ABCD为平行四边形,那么点D的坐标是________.
(2)(德州市)将点A(3,1)绕原点O顺时针旋转90°到点B,则点B的坐标是__________.
【解析】利用数形结合的方法,直观求解.
会根据图象获取信息,进行判断
例4、函数中,自变量x的取值范围是___________________;
答案:x≥l
例5、下列四个图象中,不表示某一函数图象的是( ).

分析:D图不能用函数式表示出来。
答案:D
例6(怀化市)放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,图(1)、图(2)分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.”

(1) (2)
【解析】结合已知条件和图象,先求出小明休息前的工作时间和小丽的工作效率,是解决问题的关键.
例7、( 枣庄)水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到6点,该水池的蓄水量与时间的关系如图丙所示.

下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关门两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是
(A)①③ (B)①④ (C)②③ (D)②④
选(D)
了解函数的表示方法,理解函数图象的意义
例8(贵阳市)小明根据邻居家的故事写了一道小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )

【评析】本例主要考查识图能力,对于函数图象信息题,要充分挖掘图象所含信息,通过读图、想图、析图找出解题的突破口.另外,函数图象信息通常是以其他学科为背景,因此熟悉相关学科的有关知识对解题很有帮助.
例9.某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表:
砝码的质量x(克) 0 50 100 150 200 250 300 400 500
指针位置y(厘米) 2 3 4 5 6 7 7.5 7.5 7.5
则y关于x的函数图象是( ).

分析:当砝码的质量大于或等于275克时,指针位置7.5(厘米)不变
答案:D






第二讲 正比例、反比例、一次函数
〖知识点〗
正比例函数及其图像、一次函数及其图像、反比例函数及其图像
〖大纲要求〗
1.理解正比例函数、一次函数、反比例函数的概念;
2.理解正比例函数、一次函数、反比例函数的性质;
3.会画出它们的图像;
4.会用待定系数法求正比例、反比例函数、一次函数的解析式
内容分析
1、一次函数
(1)一次函数及其图象
如果y=kx+b(K,b是常数,K≠0),那么,Y叫做X的一次函数。
特别地,如果y=kx(k是常数,K≠0),那么,y叫做x的正比例函数
一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线
(2)一次函数的性质
当k>0时y随x的增大而增大,当k<0时,y随x的增大而减小。
2、反比例函数
(1) 反比例函数及其图象
如果,那么,y是x的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象
(2)反比例函数的性质
当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y随x的增大而减小;
当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。
3.待定系数法
先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式
〖考查重点与常见题型〗
考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中
综合考查正比例、反比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题
考查用待定系数法求正比例、反比例、一次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题
利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。










第一节 一次函数

【回顾与思考】
一次函数
【例题经典】
理解一次函数的概念和性质
例1、下列函数中,正比例函数是( )
A.y==—8x B.y==—8x+1 C.y=8x2+1 D.y=-
分析:A是正比例函数,B是一次函数,C是二次函数,D是反比例函数
答案:A
例2、大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y (千米)与行驶的时间x (小时)之间的函数关系式为_________________________;
答案:y=-80x+160
例3、如图2,直线与轴交于点(-4 , 0),则> 0时,的取值范围是 ( )
A、>-4 B、>0 C、<-4 D、<0
分析:考查一次函数图像
答案:A
例4、 若一次函数y=2x+m-2的图象经过第一、第二、三象限,求m的值.
【分析】这是一道一次函数概念和性质的综合题.一次函数的一般式为y=kx+b(k≠0).首先要考虑m2-2m-2=1.函数图象经过第一、二、三象限的条件是k>0,b>0,而k=2,只需考虑m-2>0.由便可求出m的值.
用待定系数法确定一次函数表达式及其应用
例5 (2006年济宁市)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:
鞋长 16 19 24 27
鞋码 22 28 38 44
(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?
(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;
(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?
【评析】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.
建立函数模型解决实际问题
例6(南京市)某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.
(1)分别求出x≤40和x≥40时y与x之间的
关系式;
(2)如果这些农作物每天的需水量大于或等于
4000千克时,需要进行人工灌溉,那么应从
第几天开始进行人工灌溉?
【评析】本题提供了一个与生产实践密切联系的问题
情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.


























第二节 反比例函数
【回顾与思考】
反比例函数
【例题经典】
理解反比例函数的意义
若函数y=(m2-1)x为反比例函数,则m=________.
【解析】在反比例函数y=中,其解析式也可以写为y=k·x-1,故需满足两点,一是m2-1≠0,二是3m2+m-5=-1
【点评】函数y=为反比例函数,需满足k≠0,且x的指数是-1,两者缺一不可.
会灵活运用反比例函数图象和性质解题
例2、若M、N、P三点都在函数(k<0)的图象上,则的大小关系为( )
A、>>  B、>>  
C、>> D、>> 
点评:本题旨在考查学生对反比例函数性质的掌握情况,画出图象便一目了然,渗透了数形结合的数学思想。
例3 (常德市)已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函数y=的图象上的三点,且x1 A.y3【解析】反比例函数y=的图象是双曲线、由k=2>0知双曲线两个分支分别位于第一、三象限内,且在每一个象限内,y的值随着x值的增大而减小,点P1,P2,P3的横坐标均为负数,故点P1,P2均在第三象限内,而P3的第一象限.故y>0.此题也可以将P,P,P三点的横坐标取特殊值分别代入y=中,求出y1,y2,y3的值,再比较大小.
例4.某蓄电池的电压为定值,右图表示的是该蓄电池电流I(A)与电阻R(Ω)之间的函数关系图像.请你写出它的函数解析式是 .
答案:I=36/R
例5.已知直线y=kx+b与双曲线y= 交于A(x1,y1),,B(x2,y2)两点,则x1·x2的值( )
A.与k有关、与b无关 B.与k无关、与b有关
C.与k、b都有关 D.与k、b都无关
答案:D
例6(烟台市)如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(-2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的
值的x的取值范围.
【解析】(1)求反比例函数解析式需要求出m的值.
把A(-2,1)代入y=中便可求出m=-2.把B(1,n)代入y=中得n=-2.由待定系数法不难求出一次函数解析式.(2)认真观察图象,结合图象性质,便可求出x的取值范围.
例7、如图,Rt△ABO的顶点A是双曲线y= 与直线y=-x+(k+1)在第四象限的交点,AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A,C的坐标和△AOC
的面积.
解:(1)设A点坐标为(x,y),S△ABO=3/2
k=±3,∵点A在第四象限内,∴k=-3,.反比例函数的解析式为y=-3/x,一次函数的解析式为y=-x-2; (2) 解两个解析式的方程组得x1=-3 y1=1 x2=1 y2=-3.A点坐标为(1,-3),C点坐标为(-3,1),设直线AC与y轴交于点D,则D点坐标为(O,-2),S△AOC=S△AOD+S△COD=4(平方单位).















第三节 二次函数
【回顾与思考】

〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向
〖大纲要求〗
理解二次函数的概念;
会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
会用待定系数法求二次函数的解析式;
利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向
抛物线y=ax2+bx+c(a≠0)的顶点是,对称轴是,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h.
〖考查重点与常见题型〗
考查二次函数的定义、性质,有关试题常出现在选择题中,如:
已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点,
则m的值是
综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:
如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数
y=kx2+bx-1的图像大致是( )
y y y y

1 1
0 x o-1 x 0 x 0 -1 x
A B C D
考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:
已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的解析式。
考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:
已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.
5.考查代数与几何的综合能力,常见的作为专项压轴题。
【例题经典】
由抛物线的位置确定系数的符号
例1 (1)二次函数y=ax2+bx+c的图像如图1,则点M(b,)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(2)(2005年武汉市)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个

(1) (2)
【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.
例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1O;③4a+cO,其中正确结论的个数为( )
A 1个 B. 2个 C. 3个 D.4个
答案:D
会用待定系数法求二次函数解析式
例3.已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为( )
A(2,-3) B.(2,1) C(2,3) D.(3,2)
答案:C

例4、(烟台市)如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym2.
(1)写出y与x的关系式;
(2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形面积的一
半时,三角形移动了多长时间?求抛物线
顶点坐标、对称轴.
例5、(2005年天津市)已知抛物线y=x2+x-.
(1)用配方法求它的顶点坐标和对称轴.
(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.
【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.
例6.已知:二次函数y=ax2-(b+1)x-3a的图象经过点P(4,10),交x轴于A(x1,O),B(x2,O)两点(x1(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M,使锐角∠MCO>∠ACO?若存在,请你求出M点的横坐标的取值范围;若不存在,请你说明理由.
(1)解:如图∵抛物线交x轴于点A(x1,0),B(x2,O),
则x1·x2=3<0,又∵x1 ∴x2>O,x1 ∴x1·x2=-3x12=-3.∴x12=1.
x1<0,∴x1=-1.∴.x2=3.
∴点A(-1,O),P(4,10)代入解析式得解得a=2 b=3
∴.二次函数的解析式为y-2x2-4x-6.
(2)存在点M使∠MC0<∠ACO.
(2)解:点A关于y轴的对称点A’(1,O),
∴直线A,C解析式为y=6x-6直线A'C与抛物线交点为(0,-6),(5,24).
∴符合题意的x的范围为-1当点M的横坐标满足-1∠ACO.
例7、(04·青海湟中县实验区卷)“已知函数的图象经过点A(c,-2), 求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。
(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。
点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A(c,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。
[解答] (1)根据的图象经过点A(c,-2),图象的对称轴是x=3,得
解得
所以所求二次函数解析式为图象如图所示。
(2)在解析式中令y=0,得,解得
所以可以填“抛物线与x轴的一个交点的坐标是(3+”或“抛物线与x轴的一个交点的坐标是
令x=3代入解析式,得
所以抛物线的顶点坐标为
所以也可以填抛物线的顶点坐标为等等。
函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。





第四节 二次函数的应用
【回顾与思考】
二次函数应用
【例题经典】
用二次函数解决最值问题
(旅顺口区)已知边长为4的正方形截去一
个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试
在AB上求一点P,使矩形PNDM有最大面积.

【评析】本题是一道代数几何综合题,把相似三角形与二
次函数的知识有机的结合在一起,能很好考查学生的综合
应用能力.同时,也给学生探索解题思路留下了思维空间.
例2 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) 15 20 30 …
y(件) 25 20 10 …
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?
【解析】(1)设此一次函数表达式为y=kx+b.则 解得k=-1,b=40,即一次函数表达式为y=-x+40.
(2)设每件产品的销售价应定为x元,所获销售利润为w元
w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.
产品的销售价应定为25元,此时每日获得最大销售利润为225元.
【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.
例3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为(建立的平面直角坐标系如右图所示)
( )
A.1.5 m B.1.625 m      
C.1.66 m D.1.67 m
分析:本题考查二次函数的应用
答案:B



第五节 用函数的观点看方程(组)或不等式
【回顾与思考】

【例题经典】
利用一次函数图象求方程(组)的解
(1)(陕西省)直线y=kx+b(k≠0)的图象如图1,则方程kx+b=0的解为 x=_______,不等式kx+b<0的解集为x_______.

(1) (2) (3)
【点评】抓住直线与x的交点就可迎刃而解.
(2)(重庆市)如图2,已知函数y=ax+b和y=kx的图象,则方程组的解为_______.
【点评】两直线的交点坐标即为方程组的解.
利用二次函数的图象求二元二次方程的根或函数值的取值范围
例2 (吉林省)已知二次函数y1=ax2+bx+c(a≠0)和直线y2=kx+b(k≠0)的图象如图3,则当x=______时,y1=0;当x______时,y1<0;当x______时,y1>y2.
【点评】抓住抛物线与x轴的交点和直线与抛物线交点来观察分析.
利用函数与方程、不等式关系解决综合问题
例3 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按
规定剂量服药后:
(1)分别求出x≤2和x≥2时x与y之间的函
数关系式; (2)如果每毫升血液中含药量为
4微克或4微克以上时在治疗疾病时是有效的,
那么这个有效时间是多长?
【点评】从图中提供有效信息建立函数关系,并转化为不等式为解决.

第六节 函数的综合应用

【回顾与思考】
函数应用
【例题经典】
一次函数与反比例函数的综合应用
例1 (南充市)已知点A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,可不写画法).
【点评】本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.
一次函数与二次函数的综合应用
例2 (海门市)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买材料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,你有何感想(不超过30字)?

【点评】这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y与x关系式,同时这也是一道确定最优方案题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.
二次函数与图象信息类有关的实际应用问题
例3 一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价y1与上市时间x的关系可用图(a)的一条线段表示;它的种植成本y2与上市时间x的关系可用图(b)中的抛物线的一部分来表示.
(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.
(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.
(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?
(市场售价和种植成本的单位:元/千克,时间单位:天)

【点评】本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.

















第六章三角形与中考
中考要求及命题趋势
1、、线段的和与差及线段的中点;
2、角的概念、分类及计算;
3、对顶角、余角、补角的性质及计算;度、分、秒的换算;
4、垂线、垂线段、线段的垂直平分线的定义及性质;
5、直线平行的条件的应用;
6、平行线的特征的应用。
7、三角形三边的关系;三角形的分类
8、三角形内角和定理;
9、全等三角形的性质
10、三角形全等的条件
11、三角形中位线的定义及性质
12、等腰三角形的性质 与条件;
13、直角三角形的性质与判别条件
2019年中考,将继续考查线段的中点的概念及应用,对顶角、余角、补角的性质及应用。继续考查垂线、线段的垂直平分线的性质的应用,平行线性质与判定方法的应用。三角形全等的性质和判别条件,等腰三角形、直角三角形的性质和判别条件。
应试对策
1、认真掌握好线段中点的定义及相关表示方法,对顶角 、邻补角、余角的性质。
2、认真掌握垂线,线段 垂直平分线的性质与判别;平行线的性质与判定方法
3、熟练掌握与三角形有关的基本知识和基本技能;三角形全等的性质和判别条件,等腰三角形、直角三角形的性质与判别条件,并需注意将有关知识应用到综合题的解题过程中去,如把某些问题化为三角形的问题求解;能从复杂的图形中寻求全等的三角形等。
第一讲 几何初步及平行线、相交线 (?http:?/??/?www.czsx.com.cn?)

【回顾与思考】

〖知识点〗
两点确定一条直线、相交线、线段、射线、线段的大小比较、线段的和与差、线段的中点、角、角的度量、角的平分线、锐角、直角、钝角、平角、周角、对顶角、邻角、余角、补角、点到直线的距离、同位角、内错角、同旁内角、平行线、平行线的性质及判定、命题、定义、公理、定理
〖大纲要求〗
了解直线、线段和射线等概概念的区别,两条相交直线确定一个交点,
解线段和与差及线段的中点、两点间的距离、角、周角、平角、直角、锐角、钝角等概念,掌握两点确定一条直线的性质,角平分线的概念,度、分、秒的换算,几何图形的符号表示法,会根据几何语句准确、整洁地画出相应的图形;
了解斜线、斜线段、命题、定义、公理、定理及平行线等概念,了解垂线
段最短的性质,平行线的基本性质,理解对顶角、补角、邻补角的概念,理解对顶角的性质,同角或等角的补角相等的性质,掌握垂线、垂线段、点到直线的距离等概念,会识辨别同位角、内错角和同旁内角,会用一直线截两平行线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算,会用同位角相等、内错角相等、或同旁内角互补判定两条直线平行
〖考查重点与常见题型〗
求线段的长、角的度数等,多以选择题、填空题出现,如:
已知∠а=112°,则∠а的补角的度数是
利用平行线的判定与性质证明或计算,常作为主要定理或公理使用,如:
如图,AB∥CD,∠CFE=112°,ED平分∠BEF, A E B
交CD于D,则∠EDF=
【例题经典】
角的计算
例1.如图所示,∠1+∠2+∠3+∠4+∠5=_________.
解析:这类题是近几年中考的常见题型,主要考查学
生对问题的转化思想及分析、解决问题的能力.通过
观察图形,可作出一条辅助线,从而把问题化难为易.
点评:适当添加辅助线是解决几何问题的重要手段,
有时方法不唯一,可引导学生多方面、多角
度去思考.
例2、如图,已知方格纸中的每个小方格都是相
同的正方形,∠AOB画在方格纸上,请在小方格
的顶点上标出一个点P,使点P落在∠AOB的平分
线上。
考查内容:多角度、深层次理解角平分线概念,
以及与角平分线概念相联系的其它概念和原理。

【平行线的应用】
例1、(浙江)如图所示,直线a∥b,则∠A= ? 度.
例2.如图所示,下列条件中,不能判断L1∥L2的是( )
A.∠1=∠2 B.∠2=∠3
C.∠4=∠5 D.∠2+∠4=180°
分析:根据平行线的判定或性质,不难得到:∠2=∠3
不能判断L1∥L2.
点评:这类问题可由选项出发找结论,也可由结论出发
找选项.
例3.如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=5O°,则∠2的度数为( ).
(A)50° (B)6 O° (C)6 5° (D)7 O°
答案:C
例4.如图,一条公路修到湖边时,
同课章节目录