人教版高中生物必修2示范教案第四章:基因的表达

文档属性

名称 人教版高中生物必修2示范教案第四章:基因的表达
格式 zip
文件大小 12.0MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 生物学
更新时间 2019-03-01 08:24:56

图片预览

文档简介

第4章 基因的表达
●章节规划
本章安排在学生学习了“基因在哪里”和“基因是什么”之后,接下来研究“基因是如何起作用的”,即基因的表达,显得顺理成章。同第3章一样,本章要探讨的也是遗传最基本的问题,内容抽象、难懂,教师要灵活运用教学方法,仔细设计教学过程,以保证新课标的落实。
本章的核心内容是从分子水平上阐明遗传物质在生物体内是如何起作用的,即遗传信息转录和翻译的过程。教师在进行本章教学时,需要特别注意两个问题。一是在进行遗传信息转录和翻译过程的教学时,要注意这一过程中每一步骤及其所涉及的知识的内在联系。建议用一条主线将各方面内容贯穿起来,并充分培养学生阅读图文的能力。二是在本章中,教师要利用好“思考与讨论”,充分调动学生的学习的主动性,切实可行地培养学生的能力,增强学生对教学内容理解的深度。
本章包括三节:第1节《基因指导蛋白质的合成》,第2节《基因对性状的控制》,第3节《遗传密码的破译(选学)》。
第1节《基因指导蛋白质的合成》,课程标准中与此相对应的要求是:“概述遗传信息的转录和翻译”。通过本节的学习,学生需要理解遗传信息的转录和翻译。针对转录和翻译的过程,新旧教材的思路基本一致,但教师必须注意体现新教材的“新”,主要体现在以下几方面:
第一,创设问题,以问题为主线,贯穿转录和翻译的过程。在遗传信息的转录部分,以“为什么RNA适合作DNA的信使呢?”和“DNA的遗传信息是怎样传给mRNA的?”两个问题串连起来;在遗传信息的翻译部分,以“碱基与氨基酸之间的对应关系是怎样的?”和“游离在细胞质中的氨基酸,是怎样运送到合成蛋白质的‘生产线’上的呢?”两个问题串连起来。以这四个独立成段的问句统领全文,有利于启发学生的思维,同时能突出转录和翻译的主干过程,保证主线清晰。
第二,三种RNA和遗传密码的介绍相对整合。教材首先总体介绍了RNA的化学组成及其特点,细胞中三种主要的RNA及其功能,然后再在转录和翻译的过程中详细展开。对于遗传密码的介绍,教材从遗传密码破译的第一步,即从理论上推测多少个碱基编码一个氨基酸入手,启发学生思考碱基与氨基酸对应关系的问题,并指出这只是破译过程的起始,为第3节做好铺垫。
第三,注意从细胞水平与分子水平两个层面引导学生认识转录和翻译的过程。在本节开头,教材首先从细胞水平引导学生思考位于细胞核中的DNA是如何指导细胞质中蛋白质合成的,然后再将学生引导到分子水平的学习。在从分子水平认识蛋白质的合成后,教材又回到细胞水平,在结尾处写道:“肽链合成后……盘曲折叠成具有特定空间结构和功能的蛋白质分子,开始承担细胞生命活动的各项职责。”
第四,转录和翻译过程的内容,抽象难懂,教师可采用动画结合教材的图文,力求能直观形象地体现每个步骤,变抽象为形象,便于学生的理解。
第2节《基因对性状的控制》包括“中心法则的提出及其发展”和“基因、蛋白质与性状的关系”两部分内容。虽然课程标准没有对中心法则提出具体的学习要求,但考虑到中心法则是生物学的核心规律,教材仍然选择了部分内容。“基因、蛋白质与性状的关系”对应课程标准的要求“举例说明基因与性状的关系”。在学习的过程中,教师要注意引导学生对基因——蛋白质——性状三者关系的整体思维。
第3节《遗传密码的破译》是选学内容,也是原教材没有的。教师要领会课程设计的精神,明确选择这部分内容的意图,第一,遗传密码的破译这一事件本身在生物学史上占有重要的地位。第二,这一事件具有很高的科学教育价值。第三,符合课程标准的基本精神。课程标准要求“总结人类对遗传物质的探索过程”,遗传密码的破译属于对遗传物质的探索。通过对本节内容的学习,培养学生的科学探索精神。
通过分析,教师要明确本章在《遗传与进化》模块地位的重要性,灵活利用教学方法,合理设计教学方案,使学生能更好地理解本章的知识。本章的知识结构如下:
通过本章的学习,学生能概述遗传信息转录的场所、模板和过程,揭示遗传信息的翻译过程是信使RNA、核糖体和转运RNA三者协同作用的结果,概述中心法则。培养学生主动搜集有关现代遗传学发展的资料,积极参与有关探索遗传奥秘的调查、观察、模拟或探究实验活动,提高学习兴趣和增强学习主动性。关注现代遗传学的迅速发展,注重科学史实,开阔学生的眼界,对学生进行热爱科学、探求真理的教育。认同遗传学研究的新成就对解决人类面临的问题具有重大的科学价值和应用价值,积极思考遗传学与其他自然科学和人文科学的联系,为普及遗传学的知识作出贡献。
本章的教学可以安排为4个课时。第1节《基因指导蛋白质的合成》用2课时,第2节《基因对性状的控制》用1课时,第3节《遗传密码的破译(选学)》用1课时。
第1节 基因指导蛋白质的合成
●从容说课
本节内容是本章的开篇,是本章学习的基础,也是教学的难点所在,可用2课时。教师的教学设计要把握好问题的所在点,遗传信息的传递和表达是遗传物质作用原理的核心内容,教学时要先引导学生明确该原理揭示的问题,找出这个原理包容的基本要点,认真处理好教材所呈现的几个方面的问题。
1.作好本章的引子。
学生学习第3章《基因的本质》后,已经对基因产生了浓厚的兴趣,想进一步探知有关基因的各种问题,此时教师如果能够设计一个精彩的、充满悬念的引子,则能为本章的学习奠定基础。
教师可以利用第1节开头的“问题探讨”引出恐龙能否复活的话题,让学生提出反方观点,形成思维上矛盾冲突;或者采用一组美丽多彩的生物图片,把学生引进绚丽多彩的生物世界,而蛋白质是生命的体现者,自然引出蛋白质的合成。提出问题“细胞核中的基因是如何通过指导细胞质中的蛋白质合成来控制生物的性状的呢?”进一步制造悬念。最后,教师指出通过本节的学习,就可以解答大家的疑问,从而顺利切入主题。
2.准确把握主干知识与侧枝内容的教学要求。
本节主干知识是遗传信息的转录和翻译的过程,侧枝内容是DNA与RNA结构的比较、核糖与脱氧核糖的比较、三种不同种类的RNA以及遗传密码的组成。教师要注意培养学生的归纳、比较和总结的能力,在教学中,处理好主干知识与侧枝内容的关系,合理分配教学时间,明确不同内容的教学要求。
3.利用剪纸教具和多媒体课件的有机结合。
转录和翻译的过程比较抽象,学生接受起来比较困难,如果单纯利用课件,师生互动就不如人意。在课前教师指导学生按教材图4-4用可以扭动的软纸皮剪出一个DNA模型和带有不同碱基核糖核苷酸若干;按教材图4-6用彩纸剪出核糖体、三叶形的RNA和各种氨基酸(用圆+字母表示),上课时学生主动参与和教师的演示有机结合,增强了学习兴趣。变静为动,化抽象为直观,学生容易理解,效果好。同时也能真正体现新课标的学生的主体作用。
4.利用教材插图,提高知识的概括化水平。
新教材的亮点之一:插图丰富多彩,色彩逼真。有的可用于导入新课;有的可用于开阔学生的视野,提高学生的学习兴趣;有的可用于直观教学,加深对知识的理解。让学生根据教材第66页“图4-6 蛋白质合成示意图”,写出不同颜色的球所代表的氨基酸的名称,这就要求学生对知识的理解,全面而深刻。利用教材插图,促使学生真正理解翻译的全过程,提高知识的概括化水平。知识的概括化水平的高低,决定着知识的迁移程度。
5.利用表格,将知识系统化。
转录和翻译这部分内容是一个难点,学生往往停留在对知识的零碎记忆和不完整的理解水平上。让学生根据板书板画,采取“看图说话”的形式,对表格内的内容进行归纳,促使学生学会用归类和对比的学习方法,使知识系统化、条理化。
6.注重科学史实,增强学生的探究意识和学生的科学素养的培养。
●三维目标
1.知识与技能
(1)说明基因与遗传信息的关系。
(2)概述遗传信息的转录和翻译的过程。
2.过程与方法
(1)通过指导学生设计并制作转录和翻译过程的剪纸的模型,培养学生的创新意识和实践能力。
(2)通过DNA和RNA的对照掌握类比方法。
(3)通过RNA的碱基决定氨基酸的学习,掌握先逻辑推理再经实验验证的方法。
(4)通过遗传信息的传递与表达的学习,建立信息意识,学会从信息角度认识事物的方法。
(5)利用课本插图和课件,培养和发展学生的读图能力;提高分析、类比归纳的学习方法。
3.情感态度与价值观
(1)体验基因表达过程的和谐美,基因表达原理的逻辑美、简约美。
(2)认同人类探索基因表达的奥秘的过程仍未终结。
(3)通过介绍科学史实,开阔学生的眼界,对学生进行热爱科学、探求真理的教育。
(4)感悟科学破解遗传密码的过程。
●教学重点
遗传信息转录和翻译的过程。
●教学难点
遗传信息的翻译过程。
●教具准备
1.把课本的相关图片和各种对比表用PowerPoint平台制作成演示文稿。
2.转录和翻译过程的动画。
3.用软纸皮剪出一个DNA模型和带有不同碱基的核糖核苷酸若干。
4.翻译过程示意剪贴画。
●课时安排
2课时
第1课时
●教学过程
[课前准备]
教师:1.利用第3章的“自我检测”分析学生对“基因是什么”的理解情况。
2.制作PowerPoint演示文稿和转录过程的Flash动画。
学生:以八个人为学习小组,用软纸皮按教材图4-4剪出一个DNA模型和带有不同碱基的核糖核苷酸24个。
[情境创设]
教师:采用一组美丽多彩的生物图片,把学生引进绚丽多彩的生物世界,提出生命为什么如此多姿多彩?教师引导学生回答。
学生:蛋白质是生命的体现者,而蛋白质结构是多种多样的。自然引出蛋白质的合成。
教师:谁控制蛋白质的合成?
学生:基因。
教师:是不是有基因就能合成蛋白质呢?真的能复制恐龙吗?基因怎样指导蛋白质的合成呢?(展示细胞的亚显微结构)
学生:从上一章的学习,我们知道,基因是有遗传效应的DNA片段;DNA主要存在于细胞核中,而蛋白质的合成是在细胞质中进行的。那么,DNA携带的遗传信息是怎样传递到细胞质中去的呢?当遗传信息到达细胞质后,细胞又是怎样解读的呢?
教师:同学们的思考很好,下面我们一起来讨论。
[师生互动]
(一)遗传信息的转录
1.RNA的类型
教师:科学家发现,能够作为传达DNA信息的信使是RNA。即DNA→RNA→蛋白质。为什么RNA适于作DNA的信使呢?DNA和RNA的区别是什么?RNA有几种?(展示教材图4-1、图4-2和图4-3)
让学生阅读教材P62~63的内容和观察以上图片。
教师引导学生回答以上问题。
学生1:RNA是另一类核酸,它的分子结构与DNA很相似,适于作DNA的信使的原因是:
①它也是由基本单位——核苷酸连接而成,由核糖、磷酸、碱基〔C、G、A、U(尿嘧啶)〕共同组成核苷酸,它也能储存遗传信息。
②在RNA与DNA的关系中,也遵循“碱基互补配对原则”,但由于RNA中没有T,DNA中没有U,所以当RNA与DNA有关系时,U与A配对。
③RNA一般是单链,而且比DNA短,因此能够通过核孔,从细胞核转移到细胞质中。
学生2:RNA与DNA的区别有两点:
①嘧啶碱有一个不同:RNA是尿嘧啶(U),DNA则为胸腺嘧啶(T)。
②五碳糖不同:RNA是核糖,DNA是脱氧核糖,这样一来组成RNA的基本单位就是核糖核苷酸,DNA则为脱氧核苷酸。
学生3:RNA的种类:
①信使RNA——mRNA。顾名思义,这种RNA起的是信使——传递信息的作用(第一位同学讲的那种)。
②转运RNA——tRNA。这种RNA担负的是运输的任务。其三叶草型结构的一端可以连接特定的氨基酸。
③核糖体RNA——rRNA。
教师:同学们回答得很精彩。(掌声)DNA的遗传信息是怎样传给mRNA的呢?(继续探讨)
教师:指导学生阅读教材P63的第四自然段和图4-4,然后完成下列填空。如下:(PowerPoint演示)
以上画线部分由学生回答,教师更正。
(8)转录的过程:教师播放转录过程的动画,学生观看,然后学生分组利用预先剪好DNA模型和带有不同碱基的核糖核苷酸按图4-4的步骤模拟转录的过程——合成mRNA。
学生操作,教师巡视指导,各组展示结果。如下:
[教师精讲]
通过以上的分析和同学们的操作,同学们应该深刻地认识到转录的过程就是:首先是RNA聚合酶结合在DNA的模板区上,该部位的双螺旋解开成为单链。接着以一条DNA为模板,按碱基互补配对原则,利用细胞核内游离的核糖核苷酸,在RNA聚合酶的作用下合成一条RNA链。最后合成的RNA链逐渐被甩开,解旋的两条DNA链很快又结合在一起,恢复为原来的双螺旋结构,DNA上的遗传信息就被传到了mRNA上,mRNA通过核孔进入细胞质中,开始它新的历程——翻译。在转录的过程中,DNA只有一条链为模板,这已经被科学家的实验证明。Marmur和Duty利用DNA—RNA杂合技术、采用侵染枯草杆菌的噬菌体SP8为材料进行实验。噬菌体SP8的DNA分子由两条碱基组成很不平均的链构成,其中一条链富含嘌呤,另一条互补链则富含嘧啶。因为嘌呤比嘧啶重,因此富含嘌呤的“重”链与富含嘧啶的“轻”链在加热变性后可用密度梯度离心分开。实验者在SP8侵染后,从枯草杆菌中分离出RNA,分别与DNA的重链和轻链混合并缓慢冷却。他们发现SP8侵染后形成的RNA只跟重链形成DNA—RNA的杂合分子。显然,RNA是杆菌DNA中的一条链转录产生的。
通过本节的学习,我们也认识到遗传信息传递的稳定性和准确性。
[评价反馈]
用PowerPoint演示下列题目,学生抢答,统计正误,进行评价反馈。
1.构成人体的核酸有两种,构成核酸的基本单位——核苷酸有多少种?碱基有多少种?
A.2种 4种 B.4种 4种 C.5种 5种 D.8种 5种
解析:因为脱氧核苷酸有4种,核糖核苷酸也有4种,所以核苷酸共有8种;碱基有A、T、C、G、U5种,因此选D。
答案:D
2.细胞内与遗传有关的物质,从复杂到简单的结构层次是
A.DNA→染色体→脱氧核苷酸→基因
B.染色体→脱氧核苷酸→DNA→基因
C.DNA→染色体→基因→脱氧核苷酸
D.染色体→DNA→基因→脱氧核苷酸
解析:本题是检查学生对这一组概念的理解,基因是具有遗传效应的DNA片段,由一定的脱氧核苷酸序列组成,染色体是DNA的主要载体,因此选D。
答案:D
3.下列哪一组物质是RNA的组成成分
A.脱氧核糖核酸和磷酸
B.脱氧核糖、碱基和磷酸
C.核糖、碱基和磷酸
D.核糖、嘧啶和核酸
解析:RNA的组成单位是核糖核苷酸,核糖核苷酸由一分子的核糖、一分子的碱基和一分子的磷酸组成,因此选C。
答案:C
4.DNA分子的解旋发生在___________过程中
A.复制 B.转录 C.翻译 D.复制和转录
解析:考查学生对DNA的复制和转录过程的认识,不管复制和转录都必须先解旋,因此选D。
答案:D
5.果蝇的遗传物质由___________种核苷酸组成
A.2 B.4 C.5 D.8
解析:真核生物的遗传物质都是DNA,DNA有四种核苷酸,因此选B。
答案:B
6.一个DNA分子可以转录出多少种多少个mRNA
A.一种一个 B.一种多个 C.多种多个 D.无数种无数个
解析:一个DNA分子上有多种基因,因而可以转录出多种多个mRNA,因此选C。
答案:C
7.烟草、烟草花叶病毒、T2噬菌体中含有的物质,下列叙述正确的是
A.核酸的种类依次是2、1、2
B.核苷酸的种类依次是8、5、4
C.五碳糖的种类依次是2、2、1
D.含N碱基的种类依次是5、4、4
解析:本题从多方面检查学生对生物中核酸的认识,以上三种生物含有的物质正确的是:核酸的种类依次是2、1、1,核苷酸的种类依次是8、4、4,含N碱基的种类依次是5、4、4,五碳糖的种类依次是2、1、1,因此选D。
答案:D
[课堂小结]
为了让同学们能更好理解本节的内容,利用下表来概括DNA的复制和转录的内容,如下:
类 别
项 目
复 制
转 录
场 所
细胞核
细胞核
解 旋
完全解旋
只解有遗传效应的片段
模 板
DNA的两条链
只有DNA的一条链
原 料
四种脱氧核苷酸
四种核糖核苷酸

DNA解旋酶、DNA聚合酶
RNA聚合酶
能 量
ATP
ATP
碱基配对
A—T C—G T—A G—C
A—U G—C T—A C—G
产 物
子代DNA
mRNA、tRNA、rRNA
[布置作业]
1.复习转录的过程和预习翻译的过程。
2.完成课本P77的识图作答题。
[课后拓展]
列表对比DNA和RNA的不同点,如下表:
核 酸
项 目
DNA
RNA
结 构
通常是双螺旋结构,极少数病毒是单链结构
通常是单链结构,极少数病毒是双螺旋结构
基本单位
脱氧核苷酸
核糖核苷酸
五碳糖
脱氧核糖
核糖
碱 基
A、G、C、T
A、G、C、U
产生途径
DNA复制、逆转录
转录、RNA复制
存在部位
主要位于细胞核中染色体上,极少数位于细胞质中的线粒体和叶绿体上
主要位于细胞质中
功 能
传递和表达遗传信息
①mRNA:转录遗传信息,翻译的模板
②tRNA:运输特定氨基酸
③rRNA:核糖体的组成成分
●板书设计
第4章 基因的表达
第1节 基因指导蛋白质的合成
(一)遗传信息的转录
1.RNA的类型
(1)信使RNA——mRNA。
(2)转运RNA——tRNA。
(3)核糖体RNA——rRNA。
2.转录
(1)转录的定义:在细胞核中,以DNA的一条链为模板合成mRNA的过程。
(2)转录的场所:细胞核。
(3)转录的模板:DNA分子的一条链。
(4)转录的原料:四种核糖核苷酸。
(5)转录的条件:ATP(能量)、酶。
(6)转录时的碱基配对:
(7)转录的产物:mRNA。
(8)转录的过程
●习题详解
一、问题探讨(课本P62)
提示:本探讨意在引导学生思考DNA在生物体内有哪些作用,又是如何发挥作用的。一种生物的整套DNA分子中储存着该种生物生长、发育等生命活动所需的全部遗传信息,也可以说是构建生物体的蓝图。但是,从DNA到具有各种性状的生物体,需要通过极其复杂的基因表达及其调控过程才能实现,因此,在可预见的将来,利用DNA分子来使灭绝的生物复活仍是难以做到的。
二、想像空间(课本P62)
DNA相当于总司令。在战争中,如果总司令总是深入前沿阵地直接指挥,就会影响他指挥全局。DNA被核膜限制在细胞核内,使转录和翻译过程分隔在细胞的不同区域进行,有利于这两项重要生命活动的高效、准确。
三、本节聚集(课本P62)
1.细胞核和细胞质中的核糖体。
2.科学家把信使RNA链上决定一个氨基酸的相邻的三个碱基叫做一个“密码子”,也称三联体密码。1967年,科学家们破译了全部遗传密码子,并编制出了密码子表。
3.基因指导蛋白质的合成包括转录和翻译两个阶段。
四、思考与讨论一(课本P64)
1.转录和DNA复制都是以DNA为模板并严格按碱基互补配对原则进行的,碱基互补配对原则能够保证遗传信息准确无误地传递下去,从而保证了遗传的稳定性。
2.转录成的RNA碱基序列与模板DNA单链的碱基序列互补配对,与DNA的另一条链的碱基序列相同(但DNA单链上的T换成U)。
第2课时
●教学过程
[课前准备]
教师:1.制作PowerPoint演示文稿和翻译过程的Flash动画。
2.检查学生翻译剪贴画材料准备的情况。
学生:以八个人为学习小组,用各色彩纸按教材图4-6剪出一个核糖体、几种氨基酸和5个三叶形的tRNA,并准备双面胶和50 cm×50 cm的白纸一张。
[情境创设]
教师:从上一节课的学习,我们认识到mRNA合成之后,通过核孔到达细胞质的核糖体上,直接指导蛋白质的合成。遗传学上把以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程叫做翻译。但是我们知道,蛋白质是由20种氨基酸组成的,氨基酸上有碱基与mRNA的碱基互补配对吗?
学生:没有。
教师:是什么把mRNA和氨基酸联系起来的呢?它们有什么对应关系呢?这好比我们把英文翻译成中文时查阅英汉词典,正是借助于英文词与汉字的对应关系,我们才能将一篇英文翻译成汉语。而信使RNA上的碱基只有四种(A、G、C、U),那么,这四种碱基是怎样决定蛋白质上的20种氨基酸的呢?下面请同学们用数学的方法来推测。
[师生互动]
(二)遗传信息的翻译
教师:组成生物体蛋白质的氨基酸有20种,RNA有四种核苷酸,四种碱基AGCU,如何决定20种氨基酸?请各学习小组把推理过程写出来。
学生的逻辑推理:(用银幕展示)
一个碱基决定一个氨基酸只能决定4种,41=4,不行。
两个碱基决定一个氨基酸只能决定14种,42=16,不行。
三个碱基决定一个氨基酸只能决定64种,43=64,足够有余。
教师:同学们推理得真好!其实同学们所做的也就是破解遗传密码过程的一步。1961年英国的克里克和同事用实验证明一个氨基酸是由信使RNA的三个碱基决定即三联体密码子。也就是说mRNA上3个相邻的碱基决定1个氨基酸,每3个这样的碱基又称作1个密码子。
美国年轻的生物化学家尼伦伯格和同学用人工合成方式,首先阐明了遗传密码的第一个字——UUU,即决定苯丙氨酸的密码子。1967年科学家已将20种氨基酸的密码全部破译。银幕出示密码表并结合思考和讨论三(课本P65)。
各个学习小组展开讨论,教师总结讨论结果。银幕展示如下:
教师:讨论到这里,请同学们想一想氨基酸是在什么场所合成的?
学生:核糖体。
教师:mRNA进入细胞质后,就与蛋白质的“装配机器”——核糖体结合起来,形成合成蛋白质的“生产线”。有了“生产线”,还要有“工人”,才能生产产品。那么,游离在细胞质的氨基酸是怎样运送到合成蛋白质的“生产线”上的呢?也是说这个“工人”是谁呢?
学生:tRNA。
教师:用PowerPoint演示教材图4-5 tRNA的结构示意图。
教师:细胞质中的氨基酸要进入核糖体是靠搬运工tRNA——搬运来完成的,一种tRNA只能转运一种特定的氨基酸。转运RNA的另一端有三个碱基,能与信使RNA碱基相配对。例如:信使RNA上的三个碱基AUG就是一个三联体密码子,转运RNA中转运甲硫氨酸的转运RNA一端的三个碱基是UAC,只有它才能按碱基互补配对原则配对。因此,信使RNA中的AUG,叫做一个“密码子”,转运RNA的UAC叫做“反密码子”,转运氨基酸的RNA一端的三个碱基是CGA就不能去和信使RNA中的AUG配对。总之,核糖体中的信使RNA有许多“密码子”,每个“密码子”与转运特定氨基酸的RNA能够碱基配对,才能对号入座。也就是说一种转运RNA在哪个位置上对号入座是靠转运RNA的反密码子去识别,而位置则是信使RNA按遗传信息预先定了的。(以上内容教师用翻译过程的Flash动画展示,边展示边讲解,讲解完让学生按教材图4-6蛋白质合成示意图利用课前准备的材料完成翻译的过程)
学生:利用上节课转录成的mRNA模型作为翻译的模板和课前准备的材料按教材图4-6动手操作蛋白质的合成过程。学生主动完成对翻译过程的学习。
各个学习小组展示翻译过程剪贴图的剪贴成果。
教师:设计下列问题检查学生自主学习掌握的情况。银幕展示如下:(划线的部分由学生填写)
[教师精讲]
同学们的模拟操作完成得非常出色,从同学们的成果展示和问题的回答可以看到同学们对这部分内容掌握得不错,同学们的操作用了不少时间,实际上,在细胞质中,翻译是一个快速的过程。在37 ℃时,细菌细胞内合肽链的速度约为每秒连接15个氨基酸。通常,一个mRNA分子上可以相继结合多个核糖体,同时进行多条肽链的合成(展示教材的图),因此,少量的mRNA分子就可以迅速合成出大量的蛋白质。
肽链合成后,就从核糖体与mRNA复合物脱离,经过一系列步骤,被运送到各自的“岗位”,盘曲折叠成具有特定空间结构和功能的蛋白质分子,开始承担细胞生命活动的各项职责。
我们再回到探讨恐龙能否复活的问题上来,答案是再清楚不过了:即使恐龙的DNA确实包含了全部的遗传信息,复制仅为纯技术问题的话,我们也仍然无能为力。因为它并不描述一只恐龙,而是像开了一张处方(即计算机的软件),必须在另一头母恐龙体(即计算机的硬件)内去实行,也就是为了获得子恐龙,仍然需要母恐龙。
[评价反馈]
用PowerPoint演示下列题目,学生抢答,统计正误,进行评价反馈。
1.DNA复制、转录、翻译分别形成
A.DNA、RNA、蛋白质 B.RNA、DNA、多肽
C.RNA、DNA、核糖体 D.RNA、DNA、蛋白质
1.解析:DNA复制的产物是DNA,转录的产物是mRNA,翻译的产物是蛋白质,因此选A。
答案:A
2.一个DNA分子含有碱基60个,那么经“翻译”后合成的一条多肽链中最多含有肽键
A.10个 B.9个 C.30个 D.29个
解析:基因指导蛋白质的合成中,DNA上的碱基、mRNA上的碱基和氨基酸的数量关系为6∶3∶1,所以翻译成的多肽链有氨基酸10个,即有9个肽键,因此选B。
答案:B
3.遗传密码位于
A.蛋白质分子上 B.DNA分子上 C.RNA分子上 D.信使RNA分子上
解析:遗传学上把mRNA上相邻的三个碱基称作一个密码子,因此选D。
答案:D
4.若某肽链的第一个氨基酸的密码子为AUG,那么控制这个氨基酸的DNA模板链上相应的三个碱基的顺序应为
A.UAC B.AUG C.ATG D.TAC
解析:根据碱基互补配对的原则可知控制这个氨基酸的DNA模板链上的三个碱基的顺序应为:TAC。
答案:D
5.一条多肽链中有氨基酸1 000个,则作为合成该多肽的模板信使RNA和用来转录信使RNA的DNA分子分别至少要有碱基多少个
A.3 000个和3 000个 B.1 000个和2 000个
C.3 000个和6 000个 D.2 000个和4 000个
解析:利用基因指导蛋白质的合成中,DNA上的碱基、mRNA上的碱基和氨基酸的数量关系为6∶3∶1,计算可得C是正确的。
答案:C
6.一个转运RNA的3个碱基为CGA,此RNA运载的氨基酸是
A.酪氨酸(UAC) B.谷氨酸(GAG) C.精氨酸(CGA) D.丙氨酸(GCU)
解析:利用碱基互补配对的原则和密码子表可知此RNA运载的氨基酸为丙氨酸(GCU)。
答案:D
[课堂小结]
为了让同学们能更好地理解本节的内容,利用下表来概括本节的主要内容,基因指导蛋白质的合成的转录和翻译,如下:
阶 段
项 目
转 录
翻 译
定 义
在细胞核中,以DNA的一条链为模板合成mRNA的过程
以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程
场 所
细胞核
细胞质的核糖体
模 板
DNA的一条链
信使RNA
信息传递的方向
DNA→mRNA
mRNA→蛋白质
原 料
含A、U、C、G的4种核苷酸
合成蛋白质的20种氨基酸
产 物
信使RNA
有一定氨基酸排列顺序的蛋白质
实 质
是遗传信息的转录
是遗传信息的表达
[布置作业]
1.练习(课本P67)。
2.自我检测(课本P77)一、概念检测。
[课后拓展]
1.用概念图的形式画出遗传信息和基因的表达过程的实质性联系。

2.图4-1-1为人体内蛋白质合成的一个过程。据图分析并回答问题:
图4-1-1
(1)图中所合成多肽链的原料来自___________和___________。
(2)图中所示属于基因控制蛋白质合成过程中的___________步骤,该步骤发生在细胞的___________部分。
(3)图中(Ⅰ)是___________。按从左到右次序写出(Ⅱ)_____________内mRNA区段所对应的DNA碱基的排列顺序:____________________。
(4)该过程不可能发生在
A.神经细 胞B.肝细胞
C.成熟的红细胞 D.脂肪细胞
解析:本题所指的蛋白质合成过程即基因指导蛋白质的合成,可分为转录和翻译两个阶段。从给出的图形上看,有带有碱基U的单链结构,此为RNA;与球形结构相结合,并有带三个碱基的RNA在携带物质运输,因此,判断此过程为翻译阶段。
(1)蛋白质分子的结构单位是氨基酸,由氨基酸缩合形成多肽链。由蛋白质在体内代谢过程可知,氨基酸可由食物经小肠吸收而得到,也可以是自身蛋白质分解而得的氨基酸再次加入到合成组织蛋白的过程中来,或经氨基转换作用自身合成。
(2)翻译过程发生在细胞质中,图中所示的箭头形结构代表氨基酸,Ⅰ则代表运输氨基酸的转运RNA(tRNA),从核中出来的长链状信使RNA与(Ⅱ)核糖体结合,与转运RNA进行碱基互补配对。因信使RNA在核中是以DNA的一条链为模板转录出来的,因而,信使RNA中的碱基排列顺序与所对应的DNA碱基排列顺序是互补关系。
(3)基因控制蛋白质合成发生在正常细胞的细胞核与细胞质中,转录为翻译提供了信息上的准备。本题所给的四类细胞中,唯成熟的红细胞无细胞核,因而不能完成此过程。
答案:(1)食物 人体自身的分解 (2)翻译 细胞质(或核糖体) (3)tRNA(或转运RNA) 核糖体 TGATTCGAA (4)C
●板书设计
(二)基因指导蛋白质的合成
●习题详解
一、练习(课本P67)
(一)基础题
1.解析:利用碱基互补配对原则A—T、C—G、G—C、T—A、A—U、U—A。
答案:……TGCCTAGAA…… ……UGCCUAGAA…… 3 3 半胱氨酸、亮氨酸和谷氨酸
2.解析:检查学生对密码子的认识。
答案:C
(二)拓展题
1.解析:检查学生查遗传密码表的能力。
答案:查密码子表可知以下九种密码子所决定的氨基酸(如下表):
密码子
氨基酸
UUA
亮氨酸
AUA
异亮氨酸
GUA
缬氨酸
CCA
脯氨酸
CAA
谷氨酰胺
CGA
精氨酸
CUU
亮氨酸
CUC
亮氨酸
CUG
亮氨酸
从表中可以看出,共有5种变化引起了氨基酸的变化。通过这个实例可知一种氨基酸可由多个密码子决定,61种决定氨基酸的密码子共决定20种氨基酸,这种密码子的简并保证了基因某一个碱基改变以后,控制合成的蛋白质中的氨基酸有可能没有发生变化,蛋白质的结构性质也不会发生变化,这就保证了生物遗传性状的相对稳定性,对于保持物种的稳定和发展具有重要意义。这个实例说明密码子的简并性在一定程度上能防止由于碱基的改变而导致的遗传信息的改变。
2.提示:因为几个密码子可能编码同一种氨基酸,有些碱基序列并不编码氨基酸,如终止码等,所以只能根据碱基序列写出确定的氨基酸序列,而不能根据氨基酸序列写出确定的碱基序列。遗传信息的传递就是在这一过程中损失的。
二、思考和讨论二(课本P64)
1.最多能编码16种氨基酸。
2.一个氨基酸的编码至少需要3个碱基,共有43=64种不同的碱基组合,才足以组合出构成蛋白质的20种氨基酸。
三、思考和讨论三(课本P65)
1.对应的氨基酸序列为:甲硫氨酸—谷氨酸—丙氨酸—半胱氨酸—脯氨酸—丝氨酸—赖氨酸—脯氨酸。
2.这一事实说明地球上的所有生物都有着或远或近的亲缘关系,或者生物都具有相同的遗传语言,或者生命在本质上是统一的。
3.此题具有一定的开放性,旨在促进学生积极思考,不必对答案作统一要求。可以从密码简并性的角度来解释,如果密码子中的一个碱基发生变化,可能影响到蛋白质氨基酸的种类,也有可能蛋白质氨基酸的种类不发生变化(如GAU→GAC都决定天冬氨酸),这就保证了生物遗传的相对稳定性,又使生物出现变异,从而促进生物的发展进化。
四、思考和讨论四(课本P67)
1.提示:此题旨在检查学生对蛋白质合成过程的理解。可以参照教材中图4-6的表示方法来绘制。
2.提示:根据mRNA的碱基序列和密码子表就可以写出肽链的氨基酸序列。即甲硫氨酸—谷氨酸—丙氨酸—半胱氨酸—脯氨酸—丝氨酸—赖氨酸—脯氨酸。
第2节 基因对性状的控制
●从容说课
本节内容在新课标中的描述是“举例说明基因与性状的关系”,属于理解的层次。教材主要介绍了“中心法则”及其完善发展的过程,说明了基因、蛋白质与性状的关系,并通过具体事例来阐明基因是如何通过影响蛋白质的合成从而影响生物的性状的。教材用小字部分简要地介绍了细胞质遗传,指出细胞质中线粒体和叶绿体中也有少量的DNA,其中的遗传基因只能通过母亲传给下一代。本节中教材还通过开始的“问题探讨”和结尾的“技能训练”引出基因型与表现型之间的关系,说明即使基因型完全相同,但其表达过程可能受到环境因素的影响而呈现出不同的表现性状出来。最后指出在生物体中基因与性状并不是简单的线性关系,而是基因与基因、基因与基因产物、基因与环境之间多种因素共同精细地调控生物的性状,再一次强调了生物是一个错综复杂的开放的系统,学习生物一定要建立系统观。
这一节实际上是对“基因指导蛋白质合成的过程”与第一模块的“蛋白质的功能”的综合,上一节中刚讲完基因是如何控制蛋白质的合成的,那么学生就会问基因控制蛋白质的合成到底与生物的性状特征有什么关系呢?与生物的遗传有什么关系呢?学生会很自然地这样去思考,提出这些问题,但他们的知识是能回答的,关键是要老师能点拨学生从蛋白质的功能去想,以前提过蛋白质是生命活动的主要承担者和体现者,这样就把两节知识连接上了。然后再从两节的内容中概括出规律性的东西,即“中心法则”,这是生命体系中最核心最简约最本质的规律,掌握中心法则对生命本质的把握有着重要的作用。学习的升华就是不断将新旧知识建立联系,从而达到豁然开朗的境界。老师在这一章的教学中要注意对学生思维的引导和点拨。
在列举具体事例说明基因、蛋白质、性状关系时,主要又是用一些表现异常的例子,如白化病、囊性纤维病等,这里为将来学习基因突变与遗传病乃至生物的进化打下伏笔。所以本节在前后知识关联上具有重要的纽带作用。
●三维目标
1.知识与技能
(1)说出中心法则的发展历程,明确中心法则中遗传信息的流向。
(2)举例说明基因、蛋白质与性状之间的关系。
(3)举例说明基因间的相互作用及对生物的性状的精细调控。
2.过程与方法
(1)从遗传现象的实例入手,分析本质原因。
(2)点拨思维,建立新旧知识的联系。
3.情感态度与价值观
(1)树立生命的本质观,“中心法则”是生命体系中最核心、最简约、最本质的规律。
(2)树立辩证唯物主义的系统观念,生物是一个错综复杂的系统。
●教学重点
1.中心法则的建立与发展。
2.基因、蛋白质与性状的关系。
3.基因型与表现型之间的关系。
●教学难点
1.中心法则的建立与发展。
2.基因、蛋白质与性状之间的关系。
●教具准备
多媒体演示课件(中心法则图解、白化病病因图解、囊性纤维病的病因图解、基因型与表现型关系图解)
●课时安排
1课时
●教学过程
[课前准备]
本节教学以理论为主,关键是让学生建立新旧知识之间的联系,基因、蛋白质与性状之间的联系,这种联系通过图表来呈现会有更好的条理,所以课前准备,老师主要制作多媒体课件,给学生呈现清晰的中心法则图解、白化病病因图解、囊性纤维病的病因图解、基因型与表现型关系图解。
[情境创设]
课件展示“基因指导蛋白质合成过程”图,与同学们一起回顾复习转录和翻译过程。
图4-2-1
在上一节课中我们详细地学习了基因指导蛋白质合成过程,现在请你根据这幅图,画出一张流程图,简要地表示出其中的遗传信息传递方向。下面大家可以以小组的形式讨论一下。
(学生:DNARNA蛋白质)
[师生互动]
1.中心法则的提出与发展
其实生命的本质就是遗传信息的流动,整个生命的核心问题就是如何保证遗传信息能够沿着正确的方向准确无误、顺畅及时地进行流动。刚才大家概括的也是生命中的一条遗传信息流动方向。下面我们来回顾一下历史:
1928年,格里菲思(F.Griffith)首次观察到肺炎双球菌的转化现象。
1944年,艾弗里(O.Avery)等发现转化因子是DNA。
1952年,赫尔希(A.Hershey)和蔡斯(M.Chase)进行噬菌体的侵染实验,证明新的噬菌体颗粒是由DNA复制的,从而使人们的注意力从蛋白质转向核酸分子上。
一时间,许多不同专业的科学家从不同的角度对DNA进行广泛深入的研究,并且认识到阐明DNA的化学结构在了解基因如何复制上将是主要的一步。
后来1953年,沃森(J.D.Watson)和克里克(F.Crick)综合各方面的研究,建构了DNA的双螺旋结构模型。DNA双螺旋结构完美地说明了遗传物质的遗传、结构和生化的主要特征,成为生物科学史上的里程碑,标志着分子生物学的正式诞生,极大地促进了对生物体内遗传信息贮存、传递和转移规律的研究。
这一模型本身就隐含着一个明显的特征,揭示了DNA分子何以复制其自身。这种半保留复制机制得到科恩伯格(A.Kornberg)、梅塞尔森(M.Meselson)和泰勒(J.H.Taylor)等人的证实。DNA半保留复制机制阐明了遗传信息世代间的传递方式。
然而,遗传信息究竟以什么方式控制遗传呢?许多学者都曾指出,基因是以某种方式通过细胞代谢而起作用的,但缺乏令人信服的证据。
1902年,加罗德(A.Carrod)关于先天性代谢缺陷的研究可以看作是这一领域里实验研究的开端,而之后比德尔(G.Beadle)和塔特姆(E.Tatum)的工作则强有力地证明了基因突变引起了酶的改变,而且每一种基因一定控制着一种特定酶的合成,从而于1941年提出了一个基因一种酶的假说。一个基因一种酶假说暗示了基因的作用是指导蛋白质分子的最后构型,从而决定其特异性。这对人们认识基因控制蛋白质生物合成具有很大的启发作用,促进了对基因和蛋白质线性对应关系的认识,为以后的研究指明了方向。
DNA双螺旋结构和一个基因一种酶假说分别从结构上和功能上阐述了遗传物质的基本特征,把“基因是什么”和“基因如何起作用”这两个重要问题联系在一起了。
在蛋白质的合成过程还没有搞清楚之前,克里克就预见了这个遗传信息流动的一般规律,他在1957年提出一个中心法则:遗传信息可以从DNA流向DNA,也可以从DNA流向RNA,进而流向蛋白质。概括如图(4-2-2):
图4-2-2
中心法则在后来蛋白质的合成过程被揭示后获得公认,中心法则实质上蕴涵着核酸和蛋白质这两类生物大分子之间的相互联系和相互作用,而其产生和发展则与人类对核酸结构和功能的认识密切相关。但随着实验数据的积累,人们发现其中心法则也存在一些不足之处。我们看书本P69的三个资料。
你如何分析这三个资料?你认为这些资料是否推翻了传统的中心法则?为什么?
(学生:没有推翻传统的中心法则,因为从蛋白质的合成过程来看,传统的中心法则中指出的遗传信息流动是没有错的,这里的资料只是指出了新的遗传信息的流动方向)
既然是新遗传信息流动方向,中心法则应该全面地反映遗传信息的传递规律,你认为对传统的中心法则应作如何的修改?
(学生:遗传信息可以从RNA反过来流向DNA,如致癌RNA病毒)
(学生:遗传信息可以从RNA流向RNA,如RNA肿瘤病毒)
(学生:遗传信息可以从蛋白质流向蛋白质,如疯牛病病毒)
很好,这三个补充,哪个是确信无疑的了呢?哪个还只是可能正确的?
(学生:遗传信息可以从RNA反过来流向DNA,如致癌RNA病毒;遗传信息可以从RNA流向RNA,如RNA肿瘤病毒,这两个是已经被科学家确认了的。遗传信息可以从蛋白质流向蛋白质,如疯牛病病毒,这个还没有被完全确认)
根据这个讨论结果,请修改课本P68图4-7的中心法则,结果如图4-2-3所示。
图4-2-3
中心法则是生命体系中最核心、最简约、最本质的规律,掌握中心法则对生命本质的把握有着重要的作用。
(1)中心法则是现代生物学的理论基石,中心法则第一次阐明了生物体内信息传递的规律,对以后大量关于基因性质的研究起到了指导作用,导致了现代生物学研究战略的根本转变。中心法则从一个全新的角度——信息角度论证了生物界的统一性,不仅揭示了蛋白质合成中遗传信息在不同物种间的统一性,而且也证明了同一物种不同世代间信息转移的统一性。中心法则对生命物质基础和生命主宰物质这两个不同的概念给予了实质性的回答。
(2)中心法则为现代生物学理论的大统一奠定了基础,遗传、发育和进化是最基本的三大生命现象。对这三者的研究分别形成了遗传学、胚胎学和进化论。长期以来,这三门学科各自在自己的领域内都取得了长足的进展,但在遗传与发育、发育与进化的相互关系方面却留下了大片空白,始终都没有形成统一的解释理论,追求统一性是科学和哲学的崇高使命。对生物界统一性的探讨贯穿于生命科学发展的始终。生命科学中的每一次重大的理论突破,都从不同方面论证了生物界的统一性,而这种论证既标志着生命科学的综合和发展,又为进一步的研究奠定了基础,同时还会对哲学思想产生影响。如果说,遗传学是生物学的核心,它提供了一个框架,生命的多样性及其过程可在其中被理解为一个理性的统一体,那么,就可以说,中心法则是遗传学的核心,它提供了一个统一解释的规律,使我们能够更深刻地理解这个统一体。
2.基因、蛋白质与性状的关系
上节课我们只讲到在基因的指导下合成了蛋白质,那基因控制蛋白质的合成到底与基因控制生物的性状特征有什么关系呢?与生物的遗传有什么关系呢?其实我们是能回答出刚才提出的问题的,我们在必修1中已学过相关知识了,大家好好想想,蛋白质与生物性状特征有什么关系?
(学生:蛋白质是生命活动的主要承担者和体现者)
很好,蛋白质是如何承担生命活动的呢?
(学生:有些蛋白质具有运动的功能。例如,肌纤维中的肌球蛋白和肌动蛋白,是肌肉收缩系统的必要成分,它们伴随着肌原纤维的收缩而产生运动)
(学生:有些蛋白质具有运输的功能。例如,脊椎动物红细胞里的血红蛋白,在呼吸过程中都起着输送氧的作用。血液中的脂蛋白有运输脂质的作用)
(学生:有些蛋白质对生命活动起调节作用。例如,胰岛细胞分泌的胰岛素能参与血糖的代谢调节,降低血液中葡萄糖的含量)
(学生:有些蛋白质参与机体防御机能,如抗体)
(学生:在物质进出细胞膜时,主动运输和协助扩散都需要蛋白质作为载体)
(学生:作为新陈代谢的催化剂——酶绝大多数都是蛋白质。生物体内的各种化学反应几乎都是在相应的酶参与下进行的)
很好,大家思路一打开,可以回想到我们以前所学过的很多生理活动几乎都离不开蛋白质,一方面蛋白质是构成生物体的基本物质,在生物体的基本构造中蛋白质起着非常重要的作用,另一方面蛋白质又作为酶或激素对生命的新陈代谢起重要的调控作用。蛋白质也是细胞与细胞、细胞与环境之间进行信号交换的关键分子。所以说蛋白质是生命活动的主要承担者,有不同的蛋白质就会使生物体呈现出不同的生理特征,而基因也正是通过控制合成不同的蛋白质,从而来调控生物的性状特征的。
下面我们再通过几个具体的例子来看看基因、蛋白质与生物性状特征之间的关系:
例如我们前面刚学的豌豆有圆粒与皱粒这一对相对性状,100多年前,孟德尔用遗传因子的假设作出精彩的解释,如何从基因的角度来解释这一对相对性状呢?大家阅读一下课本P69,看这两种豌豆在基因有什么不同?
(学生:皱粒豌豆中的DNA中插入了一段外来的DNA序列,打乱了编码淀粉分支酶的基因)
导致蛋白质合成上有什么不同?
(学生:皱粒豌豆中淀粉分支酶不能正常合成)
酶的生理活性如何变化?
(学生:因为没有了淀粉分支酶,导致豌豆中游离的蔗糖不能合成为淀粉,蔗糖含量升高)
这与豌豆的圆粒与皱粒又有什么关系呢?
(学生:淀粉具有亲水性,能吸水膨胀,而蔗糖却不能,当豌豆成熟时,淀粉含量高的豌豆因能有效地保留水分,显得圆鼓鼓的。而淀粉含量低的豌豆由于失水而显得皱缩)
很好,我们可以简要地用图4-2-4来表述:
图4-2-4
下面我们再看一个发生在我们人身上的例子:
显示白化病患者的图片,白化病是一种较常见的皮肤及其附属器官黑色素缺乏所引起的疾病。这类病人通常是全身皮肤、毛发、眼睛缺乏黑色素,因此表现为眼睛视网膜无色素,虹膜和瞳孔呈现淡粉色,怕光,看东西时总是眯着眼睛。皮肤、眉毛、头发及其他体毛都呈白色或白里带黄。人体表现出不同的肤色是由于人体皮肤中含有的黑色素多少不一的缘故。黑种人皮肤的黑色素最多,而黄种人皮肤中的黑色素较少,而白种人皮肤中的黑色素最少,因此皮肤的颜色表现出很大的差异。而患白化病的患者则是由于机体中缺少一种酶——酪氨酸酶,患者体内的黑色素细胞不能将酪氨酸最终变成黑色素。那为什么会缺少酪氨酸酶呢?原来是白化病患者中控制酪氨酸酶形成的基因异常导致的。我们简要表达如下:
图4-2-5
从这两个例子来看,大家可以总结出什么共同点?
(学生:两个例子都是因基因通过控制酶的合成来控制代谢过程来控制生物体的性状的)
很好,下面我们再来看另外两个例子:
囊性纤维病是北美白种人中常见的一种遗传病,主要表现为患者汗液中氯离子的浓度升高,支气管被异常的黏液堵塞,常于幼年时死于肺部感染。研究表明,其病因是一个跨膜蛋白(CFTR蛋白)的基因缺失了3个碱基引起的:
图4-2-6
镰刀型细胞贫血症也是一种遗传病。正常人的红细胞成中央微凹的圆饼状,而镰刀型细胞贫血症患者的红细胞是弯曲的镰刀状(呈现图片)。这样的红细胞容易破裂,使人患溶血性贫血,严重时会导致死亡。原来发现患者血红蛋白分子的多肽链上与正常的血红蛋白分子只有一个氨基酸不同。这是由于编码血红蛋白的基因中一个碱基发生变化而引起的。
图4-2-7
大家总结一下,这两个病例有什么共同点?
(学生:这两个例子中说明基因是通过控制蛋白质的结构直接控制生物体的性状的)
综上所述,我们可以看出基因是通过控制蛋白质的合成来控制生物的性状的。不同的蛋白质使生物表现出不同的性状,而如果蛋白质不能正常合成则可能使生物出现异常的性状。
3.基因型与表现型的关系
刚才讲到,由什么样的基因决定合成什么样的蛋白质,从而使生物表现出一定的性状。我们来看下面一下例子:(呈现水毛茛图)同一株的水毛茛,为什么祼露在空气中的叶和浸在水中的叶,表现出了两种不同的形态呢?先请问,两种形态的叶,其细胞的基因组成一样吗?也就是说其基因型一样吗?
(学生:一样)
那为什么基因一样,却呈现出不同的性状呢?
(学生:环境不同)
我们再看到P71的技能训练,长翅果蝇的幼虫在不同的温度下孵化,为什么会出现不同表现型的果蝇出来呢?
(学生:环境也影响生物性状)
很好,那你能不能结合果蝇的这个例子,具体地解释环境是如何影响生物的性状的呢?(提示:从酶的角度来想)
(学生:果蝇的翅的发育需要经过酶催化的反应,而酶是在基因指导下合成后,酶活性的发挥会受到环境中诸如温度和pH的影响,在不同的温度下酶活性不同,就导致果蝇的翅的发育状态不同,出现两种性状)
很好,从这里我们可以看出,基因虽然控制生物体的性状,一般来说,有什么样的基因就会出现什么性状,即基因型决定表现型。但在基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响,即并不是有什么基因型一定会出现这种表现型,还与环境因素有关。
4.生物体性状的多基因因素
前面所讲的都是单个基因对生物体性状的控制,但事实上,基因与性状的关系并不都是这种简单的线性关系。例如,人的身高、胖瘦就可能是由多个基因决定的,其中每一个基因对身高、胖瘦都有一定作用。同时,身高、胖瘦也不完全是由基因决定的,后天的营养和体育锻炼等也有着重要的作用。
多基因遗传是指生物和人类的许多表型性状由不同座位的较多基因协同决定,而非单一基因的作用。多基因遗传时,每对基因的性状效应是微小的,但不同基因可以通过累加作用而形成一个明显的表型性状。此外,多基因遗传性状还受环境因素的影响。如人的身高、血压、智力、长相都是多基因遗传控制和环境共同作用的结果,甚至还有语言障碍、惊恐症、阅读不能症、记忆力等,还有人类一些非先天性的正常行为,如性格、自尊、对社会的态度等都受多基因遗传控制和后天环境的影响。
所以,我们对生物体应用系统的观点来看待。生物是一个系统的相互关联的整体,基因与基因、基因与基因产物、基因与环境之间多种因素存在复杂的相互作用,共同地精细地调控生物的性状。
5.细胞质基因
存在于细胞质结构中的遗传物质,叫做细胞质基因,与核基因一样具有稳定性、连续性和变异性。
1962年,科学家用电子显微镜观察衣藻、玉米,在电子密度较低的部分有20.5 nm左右的细纤维存在,用DNA酶处理,这种纤维就消失。说明了叶绿体中存在DNA。
Ris(9162)、Nass(1963)用电子显微镜观察鸡胚线粒体,小细丝能被DNA专一性的染料染色,被专一的DNA酶消化,不能被蛋白质酶或RNA酶消化。后来科学家也用电子显微镜照出游离的mtDNA链照片。说明线粒体中也有DNA。
线粒体和叶绿体中的DNA中的基因都称为细胞质基因。
对人的线粒体DNA的研究表明,线粒体DNA的缺陷与数十种人类的遗传病有关,这些疾病多与脑部和肌肉有关,例如:
LHOH病:母系遗传或非遗传性,表现为视神经坏死引起的双侧中央视力丧失,伴有心脏节律失常、神经、血管、骨骼肌系统异常,往往成年发病,但无骨骼病或严重的线粒体结构异常。
NAPP病:母系遗传,表现为色素视网膜炎、共济失调、癫痫、痴呆、近端神经肌肉衰弱、感觉神经疾病及发育迟缓。一般会致死。
Leigh综合症:母系遗传或非遗传性,幼年发病。
线粒体脑肌病:乳酸中毒,中风样发作综合症(MELAS),母系遗传病。表现为身材矮小、多毛、头痛、肌无力、运动诱发呕吐、癫痫发作、再发性脑损伤,并引起偏瘫、偏语。
肌阵挛性癫痫和破损性红肌纤维病:母系遗传,临床表现为肌阵挛性癫痫、全身性抽搐、小脑共济失调和破损性红肌纤维病等。
线粒体肌病、肥厚性心肌病(MMC):母系遗传或非遗传性,表现为骨骼肌异常及心肌病变。
从这些疾病可以看出,这些遗传病有什么特点?
(学生:这些遗传病都是通过母系遗传给后代的)
那为什么细胞质遗传主要通过母系遗传呢?
(学生:受精过程中,受精卵的细胞质主要是接受来自母亲的卵细胞)
[教师精讲]
“中心法则”及其完善发展的过程是本节的重要内容之一,中心法则是生命体系中最核心、最简约、最本质的规律,掌握中心法则对生命本质的把握有着重要的作用。中心法则蕴涵着核酸和蛋白质这两类生物大分子之间的相互联系和相互作用,从一个全新的角度——信息角度论证了生物界的统一性,不仅揭示了蛋白质合成中遗传信息在不同物种间的统一性,而且也证明了同一物种不同世代间信息传递的统一性。中心法则对生命物质基础(蛋白质)和生命主宰物质(核酸)这两个不同的概念给予了实质性的回答。中心法则也为现代生物学“遗传”“发育”和“进化”的理论找到统一的理论基础,它提供了一个统一解释的规律,使我们能够更深刻地理解这个统一体。
基因、蛋白质与性状的关系是本节的第二个重要内容。生物的性状主要是由蛋白质的功能决定的,一种蛋白质执行什么样的功能是由它的空间结构决定的,蛋白质的空间结构则取决于组成蛋白质的氨基酸的数目和种类,以及氨基酸的排列顺序。而蛋白质的氨基酸的数目、种类及排列顺序则由基因中的碱基的排列顺序来编码的。蛋白质在什么时间合成,合成的数量,合成后在什么部位发挥作用等等相关的调控信息也是由基因编码的。
基因型与表现型之间的关系,说明即使基因型完全相同,但其表达过程可能受到环境因素的影响而呈现出不同的表现性状出来。本节还指出在生物体中基因与性状并不是简单的线性关系,而是基因与基因、基因与基因产物、基因与环境之间多种因素共同地精细地调控生物的性状的,再一次强调了生物是一个错综复杂的系统,学习生物一定要建立系统观。
[评价反馈]
1.揭示生物体内遗传信息传递一般规律的是
A.基因的遗传规律 B.碱基互补配对原则
C.中心法则 D.自然选择学说
解析:此题考查中心法则的含义,中心法则反映的是遗传信息的一般规律。
答案:C
2.甜豌豆的紫花对白花是一对相对性状,由非同源染色体上的两个相对基因共同控制,只有当同时存在两个显性基因(A和B)时,花中的紫色素才能合成,下列说法正确的是
A.一种性状只能由一种基因控制
B.基因在控制生物体的性状上是互不干扰的
C.每种性状都是由两个基因控制的
D.基因之间存在着相互作用
解析:同时存在两个显性基因(A和B)时花中的紫色素才能合成,说明这两个基因共同控制花色这个性状。
答案:D
3.观赏植物藏报春,在20~25 ℃的条件下,红色(A)对白色(a)为显性,基因型为AA或Aa的藏报春开红花,基因型为aa的藏报春开白花。但是,如果把开红花的藏报春移到30 ℃条件下,虽然基因型仍为AA或Aa,但新开的花全是白花,这说明了什么?
解析:此题考查了基因型与表现型之间的关系。
答案:基因的表达过程以有表达产生的酶的活性都可能受到环境的影响,说明基因对性状的控制受到环境因素的影响。
4.引发非典型性肺炎的SARS病毒为单链RNA病毒,复制不经过DNA中间体,使用标准密码子。图4-2-8为SARS病毒在宿主细胞内的增殖示意图:
图4-2-8
请概括出SARS病毒遗传信息传递和表达的主要途径:_________________________。
提示:要注意图中的箭头依次写出:(病毒)RNA→(互补)RNA→(病毒)RNA→蛋白质或RNA(自我复制)→蛋白质。
[课堂小结]
本节我们主要学习了中心法则的提出及发展补充,清楚了生物体中几种遗传信息的传递方向。遗传信息可以从DNA流向DNA;也可以从DNA流向RNA,进而流向蛋白质;也可以从RNA反过来流向DNA;也可以从RNA流向RNA,也可能从蛋白质流向蛋白质。同时我们也理清了基因、蛋白质和性状之间的关系。基因通过控制蛋白质的合成来控制生物的不同性状。
另外我们还介绍了基因型与表现型的关系,一般来说,基因型决定表现型,但在基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响。还强调了生物是一个系统的相互关联的整体,基因与基因、基因与基因产物、基因与环境之间多种因素存在复杂的相互作用,共同地精细地调控生物的性状。最后简单介绍了胞质基因与细胞质遗传,线粒体和叶绿体中的DNA中的基因都称为细胞质基因。细胞质遗传为母系遗传。
[作业布置]
完成课本P71练习。
[课后拓展]
PCT(苯硫脲)味盲和基因的关系
实验:
1.提前2天配制PTC溶液:称取PTC结晶1.3 g加入蒸馏水1 000 mL,多次搅拌到完全溶解(PTC的质量分数为1/750)。
2.测试前分别配制A液(将上述母液稀释512倍,即质量分数为1/380 000的溶液)和B液(将母液稀释32倍,即质量分数为1/24 000的溶液)。
3.测试者用滴管吸取A液,在被测试者的舌根部滴3滴,让他徐徐咽下,询问能否感知苦味,然后滴3滴蒸馏水,询问能否感知苦味;如果不能,采用B液和蒸馏水测试。
4.统计全班同学的味觉数据,用坐标图表示测试结果。
5.如何设计实验区分哪些同学的基因型是TT,哪些同学的基因型是Tt?
已知:
基因型为TT的人,可以尝出质量分数为1/60 000 00~1/750 000的PCT溶液的苦味。基因型为Tt的人,可以尝出质量分数为1/380 000~1/48 000的PCT溶液的苦味;基因型为tt的人只能尝出质量分数为1/24 000以及质量分数更高的PCT溶液的苦味。
●板书设计
第2节 基因对性状的控制
1.中心法则的提出与发展
2.基因、蛋白质与性状的关系
3.基因型与表现型的关系:基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响。
4.生物体性状的多基因因素:基因与基因、基因与基因产物、基因与环境之间多种因素存在复杂的相互作用,共同地精细地调控生物的性状。
5.细胞质基因:线粒体和叶绿体中的DNA中的基因都称为细胞质基因。母系遗传。
●习题详解
一、练习(课本P71)
(一)基础题
1.解析:此题主要考查基因、蛋白质与性状三者之间的关系。生物体的性状完全由基因控制是不正确的,性状还可能受到环境因素的影响。因为环境因素可能引起酶的活性发生改变,另外环境因素还包括营养的供应是否充足等。
答案:A
2.(1)解析:此题考查基因与性状的对应关系。课本明确说了基因与性状的关系不都是简单的线性关系。一些性状可能由两个或两个以上的基因共同决定的。
答案:×
(2)解析:此题考查基因控制性状的方式,基因控制生物的性状除了通过控制酶的合成外还能通过控制蛋白质的结构来调控生物的性状。
答案:×
(3)解析:此题考查了中心法则的基本规律。
答案:√
(二)拓展题
1.这里涉及逻辑学中的“必要而非充分条件”概念,红眼基因正常是形成红眼的必要而非充分条件。红眼基因正常,并且其他涉及红眼形成的基因也正常时,果蝇的红眼才能形成;如果红眼基因不正常,即使所有其他涉及红眼形成的基因都正常,果蝇的红眼也不能形成。
2.生物体内的基因的数目多、作用方式复杂,难以单独对其进行研究,生物体的异常性状为科学家研究相关基因的作用提供了一个突破口,使科学家能够从异常性状入手,分析性状异常的个体的基因是否存在区别,存在哪些区别,从而建立起性状与基因的对应关系。因为性状是由基因控制的,如果某一性状的基因发生了异常,并且能稳定遗传,说明控制该性状的基因发生了突变。根据异常性状的遗传方式,还可以分析出控制该性状的基因是位于性染色体上还是常染色体上,是显性还是隐性,并且可以预测这一性状将来的遗传规律。这类似于数学中的反证法。
二、问题探讨(课本P68)
1.水中的叶比空气中的叶要狭小细长一些。
2.其基因组成是一样的,因为同一植株的所有体细胞中的染色体是一样的。
3.为什么基因组成相同,表现出来的叶的性状却不同?
三、本节聚焦(课本P68)
1.中心法则反映的是生物体内遗传信息的传递方向。遗传信息可以从DNA流向DNA(DNA的复制过程);可以从DNA流向RNA(转录);可以从RNA流向蛋白质(翻译);可以从RNA反过来流向DNA(致癌RNA病毒的逆转录);可以从RNA流向RNA(RNA肿瘤病毒中遗传物质的复制);遗传信息也可能从蛋白质流向蛋白质(如疯牛病病毒)。
2.基因中碱基序列决定了蛋白质合成过程中氨基酸的数目、种类和排列顺序。
3.基因可以通过控制酶的合成来控制代谢活动,从而控制生物体的性状;基因也可以通过控制蛋白质的结构直接控制生物体的性状。
四、资料分析(课本P69)
1.没有推翻传统的中心法则,因为从蛋白质的合成过程来看,传统的中心法则中指出的遗传信息流动是没有错的,这里的资料只是指出了新的遗传信息的流动方向。
2.补充:遗传信息可以从RNA反过来流向DNA,如致癌RNA病毒;遗传信息可以从RNA流向RNA,如RNA肿瘤病毒;遗传信息可以从蛋白质流向蛋白质,如疯牛病病毒。
3.参见教学过程。
五、旁栏思考题(课本P69)
基因与性状的关系并不都是这种简单的线性关系。很多性状可能是由多个基因决定的,每对基因的性状效应是微小的,但不同基因可以通过累加作用而形成一个明显的表型性状。生物是一个系统的相互关联的整体,基因与基因、基因与基因产物、基因与环境之间多种因素存在复杂的相互作用,共同地精细地调控生物的性状。
六、批判性思维(课本P70)
一般来说,有什么样的基因就会出现什么性状,即基因型决定表现型。基因是性状形成的内因,但性状的形成往往是内因与外因(环境因素)相互作用的结果,因为基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响,即并不是有什么基因型就一定会出现这种表现型,还与环境因素有关。
七、技能训练(课本P71)
1.假说:翅的发育需要经过酶催化的反应,而酶是在基因指导下合成后,酶活性的发挥会受到环境中诸如温度和pH的影响,在不同的温度下酶活性不同,就导致果蝇的翅的发育状态不同,出现两种性状。
2.一般来说,有什么样的基因就会出现什么性状,即基因型决定表现型。但在基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响,即并不是有什么基因型一定会出现这种表现型,还与环境因素有关。
第3节 遗传密码的破译(选学)
●从容说课
本节的主要内容是遗传密码的破译过程。自从“一基因一酶”学说建立(1941年)以后,人们逐步地认识到基因和蛋白的关系。“中心法则”提出后更为明确地指出了遗传信息传递的方向,总体上来说是从DNA→RNA→蛋白质。那DNA和蛋白质之间究竟是什么关系?或者说DNA是如何决定蛋白质?这个有趣而深奥的问题在20世纪50年代末就开始引起了一批研究者的极大兴趣。早在遗传物质的化学本质尚未确定之前,1944年理论物理学家薛定谔发表的《什么是生命》一书中就大胆地预言,染色体是由一些同分异构的单体分子连续所组成。这种连续体的精确性组成了遗传密码。他认为同分异构单体可能作为一般民用的莫尔斯电码的两个符号:“· ”“—”,通过排列组合来储存遗传信息。1954年科普作家伽莫夫G.Gamor对破译密码首先提出了挑战,他用数学的方法推断3个碱基编码一个氨基酸。但人们不禁要问在三联体中的每个碱基作为信息只读一次还是重复阅读呢?1957年Brenner.S发表理论文章,他通过蛋白质的氨基酸顺序分析,发现不存在氨基酸的邻位限制作用,从而在理论上否定了遗传密码重叠阅读的可能性。而克里克在1961年第一个用T4噬菌体实验证明了遗传密码中3个碱基编码一个氨基酸。同一年尼伦伯格和马太利用无细胞系统进行体外重组破译了第一个遗传密码。后来尼伦伯格和他的小组采用了一把钥匙开一把锁的思路,一举破译了全部的密码。
遗传密码的破译是生物学史上的一个伟大的里程碑,为人类探索和提示生命的本质的研究向前迈进一大步,为后面分子遗传生物学的发展有着重要的推动作用。遗传密码的破译,测序方法的建立以及体外重组的实现是基因工程的三大基石。
本节内容实际上是对科学史的介绍,但其实际目的是让学生学习其中蕴含的科学研究方法,学习这些科学家的那种敏锐、大胆、睿智和创新的精神还有那种巧妙的构思,开拓学生的思维方式,培养学生具有科学家的思维素养。这是本节最重要的教学价值所在。那么如何让学生感受这种思维过程并产生与科学家的思维共鸣是本节的教学重点和难点。
在学习方法上,由于遗传密码的知识相对较深奥,采用对比的方法可以使问题更容易理解,如将遗传密码与莫尔斯密码进行类比,将克里克的实验与英文句子进行类比。
本节属于选学内容,可用1个课时,由教师根据实际情况灵活安排。在知识关联上,本节是对本章第一节的重要补充。
●三维目标
1.知识与技能
(1)说出遗传密码的阅读方式。
(2)说出遗传密码的破译过程,包括伽莫夫的三联体推断,克里克的实验证据,尼伦伯格和马太的蛋白质的体外合成实验。
2.过程与方法
(1)感受和重温科学家的思维历程。
(2)类比的学习方法。
3.情感态度与价值观
(1)对科学家那种敏锐、大胆、睿智和创新的精神还有那种巧妙的构思表达敬佩。
(2)认同遗传密码的破译对生物学发展的重要意义。
●教学重点
遗传密码的破译过程,引导学生感受这种思维过程并产生与科学家的思维共鸣。
●教学难点
1.克里克的T4噬菌体实验。
2.尼伦伯格和马太设计的蛋白质体外合成实验。
●教具准备
多媒体演示课件
●课时安排
1课时
●教学过程
[课前准备]
本节课以展示和呈现历史为主,课前老师要精心设计多媒体课件,包括莫尔斯的密码电报;以重叠和非重叠方式阅读DNA序列;英文句子插入字母类比克里克实验;尼伦伯格和马太设计的蛋白质体外合成实验,以及各位科学家的肖像。要考虑每一内容的呈现方式与顺序如何有利于引导学生思维。
[情境创设]
在第1节我们学习了有关基因指导蛋白质合成的过程,我们知道了核酸中的碱基序列就是遗传信息,翻译实际上就是将mRNA中的碱基序列翻译为蛋白质的氨基酸序列,那碱基序列与氨基酸序列是如何对应的呢?就是通过密码子。(呈现密码子表)
现在大家已经十分清楚了这些遗传密码,而当时是经过许多科学家艰辛的思考和探索,最后被几个年轻人的富有创新的实验才破译的,这个过程充满了思维的智慧。那这些遗传密码是怎样被破译的呢?让我们重新重温一下这段科学史,追寻科学家探索的足迹,对我们的思维会有好的启迪作用的。
[师生互动]
1.研究背景
在孟德尔遗传规律于1900年被再次证实之后,许多科学家投入到遗传问题的研究上来,试图揭示基因的本质和作用原理。
1941年比德尔(G.Beadle)和塔特姆(E.Tatum)的工作则强有力地证明了基因突变引起了酶的改变,而且每一种基因一定控制着一种特定酶的合成,从而提出了一个基因一种酶的假说。人们逐步地认识到基因和蛋白质的关系。
“中心法则”提出后更为明确地指出了遗传信息传递的方向,总体上来说是从DNA→RNA→蛋白质。那DNA和蛋白质之间究竟是什么关系?或者说DNA是如何决定蛋白质?这个有趣而深奥的问题在五十年代末就开始引起了一批研究者的极大兴趣。
1944年,理论物理学家薛定谔发表的《什么是生命》一书中就大胆地预言,染色体是由一些同分异构的单体分子连续所组成。这种连续体的精确性组成了遗传密码。他认为同分异构单体可能作为一般民用的莫尔斯电码的两个符号:“· ”“—”,通过排列组合来储存遗传信息。
那什么是莫尔斯电码呢?我们来看下面的资料:
莫尔斯电码,是由美国画家和电报发明人莫尔斯于1838年发明的一套有“点”和“划”构成的系统,通过“点”和“划”间隔的不同排列顺序来表达不同的英文字母、数字和标点符号。1844年在美国国会的财政支持下,莫尔斯开设了从马里兰州的巴尔地摩到美国首都华盛顿的第一条使用“莫尔斯码”通信的电报线路,1851年,在欧洲国家有关方面的支持下,莫尔斯码经过简化,以后就一直成为国际通用标准通信电码。电报的发明、莫尔斯码的使用改变了人类社会的面貌。随着社会的进步、科学的发展,有更先进的通信方式在等待着我们使用,但电报“莫尔斯”码通信在业余无线电中占有重要的地位。国际电信联盟制定的“无线电规则”中明确指出:任何人请求领取使用业余电台设备执照,都应该证明其能够准确地用手发和用耳接收“莫尔斯”电码信号组成的电文。虽然今天计算机技术给自动或半自动收发电报创造了条件,但每一位真正的爱好者仍必须并且也可以通过自我训练掌握人工收发报技术。莫尔斯电码本身并无机密可言,它仅仅只是一种工具。
· :短音念作“滴(di)”
—:长音念作“答(da)”
字码:
A:·— B:—··· C:—·—· D:—·· E:· F:··—·
G:— —· H:···· I:·· J:·— — — K:—·— L:·—··
M:— — N:—· O:— — — P:·— —· Q:— — ·— R:·—·
S:··· T:— U:··— V:···— W:·— — X:—··—
Y:—·— — Z:— —·· ?:··— —·· /:—··—· —:—····—
数码(长码):
1:·— — — — 2.··— — — 3:···— — 4.····— 5:·····
6:— ···· 7:— — ··· 8:— — — ·· 9:— — — —· 0:— — — — —
请根据莫尔斯电码表,将书本中问题探讨中的那段电文译成英文。
(学生:翻译后是:where are genes located)
你能用莫尔斯电码来回答这个问题吗?
(学生:—··/—·/·基因位于DNA上)
很好,我们通过莫尔斯电码大致体验了“翻译”的过程,无论从电文译成英文还是从英文译成电文都离不开莫尔斯密码表,而我们知道后来被确认的蛋白质的合成过程中也正是有类似这样的密码子。
而当时遗传物质的化学本质是尚未明确的,十年后DNA双螺旋模型才得以建立,在这样的背景下能将遗传信息设想成一种电码式的遗传密码形式,实在是一种超越时代的远见卓识。到1953年双螺旋模型的建立,给予科学家们以很大的激励。破译遗传密码也就成了势在必行的工作。
要破译一个未知的密码,一般的思路就是比较编码的信息,即密码和相应的译文。对于遗传密码来说最简单的破译方法应是将DNA顺序或mRNA顺序和多肽相比较。但和一般破译密码不同的是,遗传信息的译文——蛋白质的顺序是已知的,未知的都是密码。1954年Sanger用纸层析分析了胰岛素的结构后,对蛋白质的氨基酸序列了解得越来越多。但是直到1965年前后经历了十年时间,多位科学家的执著研究才破译了密码,其中最为重要的几项工作其思路之新颖、方法之精巧都闪烁着科学的智慧之光。
2.遗传密码的试拼与阅读方式的探索
1954年科普作家伽莫夫G.Gamor对破译密码首先提出了挑战。他以著有《奇异王国的汤姆金斯》等优秀的科学幻想作品而著称,具有丰富的想象力,但他不是一位实验科学家,所以只能从理论上来尝试密码的解读。当年,他在《自然Nature》杂志首次发表了遗传密码的理论研究的文章,指出“氨基酸正好按DNA的螺旋结构进入各自的洞穴”。他设想:
若一种碱基与一种氨基酸对应的话,那么只可能产生4种氨基酸,而已知天然的氨基酸约有20种,因此不可由一个碱基编码一种氨基酸。
若2个碱基编码一种氨基酸的话,4种碱基共有42=16种不同的排列组合,也不足以编码20种氨基酸。
因此他认为3个碱基编码一种氨基酸的就可以解决问题。虽然4个碱基组成三联密码,经排列组合可产生43=64种不同形式,要比20种氨基酸大两倍多。
但若是四联密码,就会产生44=256种排列组合。
相比之下只有三联体(triplet)较为符合20种氨基酸。
伽莫夫是用数学的排列组合的方法在理论上作出推测的,后来的实验证实这一推测是完全正确的。
接下来,人们不禁又要问在三联体中的每个碱基作为信息只读一次还是重复阅读呢?以重叠和非重叠方式阅读DNA序列会有什么不同呢?呈现图片(课本P74“以重叠和非重叠方式阅读DNA序列”),思考:
当图中的DNA的第三个碱基T发生改变时,如果密码子是非重叠的,这一改变将影响多少个氨基酸?
(学生:将可能影响1个氨基酸)
如果密码子是重叠的,这一改变又将影响多少个氨基酸?
(学生:将可能影响3个氨基酸)
当图中的DNA的第三个碱基T后插入一个碱基A的话,如果密码子是非重叠的,这一改变将影响多少个氨基酸?
(学生:将会影响后面所有的氨基酸)
如果插入两个碱基呢?
(学生:也会影响后面所有的氨基酸)
如果插入3个碱基呢?
(学生:将会在原氨基酸序列中多一个氨基酸)
当图中的DNA的第三个碱基T后插入一个碱基A的话,如果密码子是重叠的,这一改变将影响多少个氨基酸?插入2个、3个氨基酸呢?
(学生:如果插入1个碱基,影响3个氨基酸,多肽比原正常多肽多1个氨基酸)
(学生:如果插入2个碱基,影响4个氨基酸,多肽比原正常多肽多2个氨基酸)
(学生:如果插入3个碱基,影响5个氨基酸,多肽比原正常多肽多3个氨基酸)
如果从效率上来考虑,你觉得哪种阅读方式效率更高呢?
伽莫夫也许是考虑到效率的问题,认为一个碱基可能被重复读多次,也就是说遗传密码的阅读是完全重叠的,因此氨基酸数目和核苷酸数目存在着一对一的关系。这一假定非常简洁地解释了核苷酸间距和多肽链上邻接氨基酸的间距(0.36 nm)之间显示了明显的相关性。
若真如此,重叠密码对多肽链上氨基酸的序列就形成了一种限制。例如,具有完全重叠密码的密码子ATC,后面接着的密码子一定是TC开头,那么相应的氨基酸的顺序也会受到限制。再者若是重叠密码,那么任何一个碱基的突变都会影响到相连的3个重叠密码子,即三个氨基酸都会发生改变,但事实并非如此。
1957年Brenner.S发表了一篇令人兴奋的理论文章,他通过蛋白质的氨基酸顺序分析,发现不存在氨基酸的邻位限制作用,从而否定了遗传密码重叠阅读的可能性。同时人们也发现在镰刀型细胞贫血的例子中,血红蛋白中仅有一个氨基酸发生改变。说明伽莫夫的后一推论是错误的。这就是智者千虑,必有一失。很多著名的科学家也有过类似的失误。在资料较少的情况下,对未知的真理作出推断,难免会发生偏差,但瑕不掩瑜,人们对他们的那种敏锐、大胆、睿智和创新的精神,巧妙的构思仍敬佩不已。
3.遗传密码子的验证(克里克的实验)
三联密码是否真实存在呢?如果真实存在,那么共有64个密码子,而氨基酸只有20种,那么多余的44种有何用处呢?
1957年克里克Crick等为了解释这个问题提出了一个设想。首先认为如AAA,GGG,CCC,TTT这四个三联体,分别由相同的碱基构成,解读的起始位置有可能发生差错,因此可能是“无义”密码子。这样余下的只有60个密码子。接着他们又设想,例如ATT和GCA若分别编码氨基酸a和b,若这两个密码子连续排列成ATTGCAATT……在起读时若发生错位就会产生TTG,TGC,CAA和AAT等顺序就是错读,这些错读的重叠密码也是无意义的,也就是说一个顺序有3种读法,其中只有一种是有意义的,而其余的两种都是无义密码,这样(60×1/3=20)有义密码子只有20个,似乎是很圆满地解释了氨基酸数目和密码子总数之间的矛盾,但后来的实验证明,此设想也是重蹈Gemor的覆辙。
直到1961年克里克Crick和Brenner.S等设计了一个实验,有力地证实了三联密码的真实性。他们用T4噬菌体染色体上的一个基因通过用原黄素处理,可以使DNA脱落或插入单个碱基,插入叫“加字”突变,脱落叫“减字”突变,无论加字和减字都可以引起移码突变。Crick小组用这种方法获得一系列的T4噬菌体“加字”和“减字”突变,再进行杂交来获得加入或减少一个、两个、三个的不同碱基数的系列突变。
通过这样的方法他们发现加入或减少一个和两个碱基都会引起噬菌体突变,无法产生正常功能的蛋白,而加入或减少3个碱基时却可以合成正常功能的蛋白质,为什么会这样呢?我们结合课本P74上的有关句子中插入英语字母对语句产生的变化来理解,进行类比分析。
克里克用实验的结果证明每个密码的确是由3个碱基组成的。克里克对遗传密码提出了4个特点:(1)3个碱基一组,编码一个氨基酸。(2)密码是不重叠的。(3)碱基的顺序是从固定起点解读的。(4)密码是简并的,即某个特定的氨基酸可以由几个碱基三联体来编码。否定了他们以前的解释,即64种密码子中只有20种编码,其余的44种都是无意的这一推测。从他们的实验结果来看,如果以前的解释是正确的话,那么任何移码突变都将是无义突变,那么T4噬菌体突变体的那个区域应当很小,但其实不然,发生移码仍可翻译,只不过肽链的顺序发生很大的改变,而不是产生很短的肽链。
4.遗传密码对应规则的发现
那如何找出64种密码子到底对应哪种氨基酸呢?
在美国国立卫生研究院(NIH)从事研究工作的青年科学家尼伦伯格M.W.Nirenberg在读到第一篇发现mRNA的报道之后,就决定计划建立一种无细胞反应系统,来揭开遗传密码之谜。
他们的方法和思路与克里克的完全不同,他们采用的体外合成蛋白质的技术(呈现书中蛋白质体外合成的实验示意图):
(1)去模板:用DNA酶处理细胞抽提物,使DNA降解,除去原有的细胞模板。在抽提物含有核糖体、ATP及各种氨基酸,除mRNA以外,是一个完整的翻译系统。由于DNA被降解,所以不再转录新的mRNA,即使原来残留的mRNA因其半衰期很短,也很快会降解掉。
(2)加入polyU:Nirenberg成功地破坏了翻译系统中的内源mRNA,这样从理论上来说若加入任何外源mRNA就可以按新的信息合成蛋白。他们采用了多核苷酸磷酸化酶,仅以尿苷二磷酸为底物,人工合成polyU。当他们把人工合成的polyU加入这种无细胞系统中代替天然的mRNA时,惊喜地发现果真合成了单一的多肽,即多聚苯丙氨酸,它的氨基酸残基全是苯丙氨酸,这一结果不仅证实了无细胞系统的成功,同时还表明UUU是苯丙氨酸的密码子。
这是第一个遗传密码子被破译。尼伦伯格的实验巧妙之处在于利用无细胞系统进行体外合成蛋白质,他这富有创新的实验方法为他带来了重大的成功!
请问为什么要去除细胞提取液中的DNA和mRNA?
(学生:防止细胞原有的DNA和mRNA中的遗传信息起作用干扰实验结果)
如果你是尼伦伯格,你将如何设计对照实验,确保你的重大发现是正确的?
(学生:在对照实验中的所有试管中加入成分均不变,但是不加入多聚尿嘧啶核苷酸)
实验做到这里,你能想到其他的密码如何破译吗?
(学生:加入不同的人工合成的多聚核苷酸进行实验)
很好,尼伦伯格也用同样的方法分别加入polyA、polyC和polyG结果相应地获得了多聚赖氨酸、多聚脯氨酸和多聚甘氨酸。Nirenberg利用无细胞系统体外合成蛋白质不仅顺利地破译了4个密码子,同时了证实了Crick等原先认为AAA,UUU,GGG,CCC是无义密码子的推测是错误的。
在接下来的六七年里,科学家沿着体外合成蛋白质的思路,不断地改进实验方法,破译出了全部的密码子,并编制出了密码子表。这项工作成为生物学史上的一个伟大的里程碑!为人类探索和提示生命的本质的研究向前迈进一大步,为后面分子遗传生物学的发展有着重要的推动作用。遗传密码的破译、测序方法的建立以及体外重组的实现是基因工程的三大基石。
[教师精讲]
我们注意整个破译过程中科学家思维的变化,薛定谔是以富有远见卓识的大胆的想象来预测遗传密码的形式的,伽莫夫通过数学的排列组合的计算来推测密码子是由三个碱基组成的,同时他也预测了密码的阅读方式,尽管智者千虑,必有一失,但巧妙的构思依然显示了其睿智和创新。克里克则是巧妙地设计实验,利用原黄素处理噬菌体,使DNA脱落或插入单个碱基的方法从实验上证明了伽莫夫的三联体密码子的推测,由理论走向实验,为密码子的破译迈出重要的一步。而尼伦伯格的实验则更富有创新性,他建立巧妙的无细胞系统进行体外蛋白质合成,成功地破译了第一个密码子,随后的方法不断创新最终破译了所有的密码子。他的贡献不仅仅在于对遗传密码的破译,更重要的也在对生物研究方法上开启了新的思维方式。
归结起来,我们看到,敏锐、大胆、睿智和创新是科学家的重要素养,也正如尼伦伯格在1968年获得诺贝尔生理学或医学奖时说过:一个善于捕捉细节的人才是能领略事物真谛的人。
[评价反馈]
1.在下列基因的改变中,合成出具有正常功能蛋白质的可能性最大的是
A.在相关的基因的碱基序列中删除或增加一个碱基对
B.在相关的基因的碱基序列中删除或增加两个碱基对
C.在相关的基因的碱基序列中删除或增加三个碱基对
D.在相关的基因的碱基序列中删除或增加四个碱基对
解析:此题考查基因中碱基数量发生突变时对合成蛋白质的影响,当插入1、2的倍数个碱基时,都会对后面的所有的氨基酸有影响。当插入3个碱基时,则可能对部分氨基酸有影响,所以C是最可能合成具有正常功能蛋白质。
答案:C
2.最早提出3个碱基编码一个氨基酸的科学家和首次用实验的方法加以证明的科学家分别是
A.克里克、伽莫夫 B.克里克、沃森
C.摩尔根、尼伦伯格 D.伽莫夫、克里克
解析:此题考查的是科学史。
答案:D
3.采用蛋白质体外合成的技术揭示遗传密码实验中,改变下列哪项操作,即可测出全部的遗传密码与氨基酸的对应规则
A.无DNA和mRNA细胞的提取液 B.人工合成的多聚核苷酸
C.加入的氨基酸种类和数量 D.测定多肽链中氨基酸种类的方法
解析:此题考查了尼伦伯格的实验,通过改变人工模板多聚核苷酸可以测出不同密码子。
答案:B
[课堂小结]
这节课我们回顾了遗传密码的破译过程:
1944年理论物理学家薛定谔发表的《什么是生命》一书中就大胆地预言,遗传密码可能与莫尔斯电码类似,通过排列组合来储存遗传信息。
1954年科普作家伽莫夫用数学的方法推断3个碱基编码一个氨基酸。
1957年Brenner.S发表文章,在理论上否定了遗传密码重叠阅读的可能性。
1961年克里克第一个用T4噬菌体实验证明了遗传密码中3个碱基编码一个氨基酸。
1961年尼伦伯格和马太利用无细胞系统进行体外重组破译了第一个遗传密码。
1965年科学家们破译了全部的密码。
[作业布置]
完成书本自我检测练习。
[课后拓展]
资料阅读:
破译遗传密码的第二种方法——利用重复共聚物破译密码
1965年Khorara以不同的思路和方法也巧妙地破译了全部的密码,他发挥了自己合成RNA的特长,用已知碱基组成两个、三个或四个碱基合成重复顺序的mRNA,在体外翻译系统中加入同位素标记的氨基酸,然后分析所合成多肽的氨基酸顺序,再进行比较分析。
Khorara采用了有机合成一条短的单链DNA重复顺序,然后用DNA pol1合成其互补链,然后用RNA pol及不同的底物合成两条重复的RNA共聚物,作为翻译的mRNA,加入到体外表达系统中,根据合成的肽链(以同位素标记)的相应顺序来推测各氨基酸的密码子。如表所示,当重复顺序为(UC)n时,组成的重复RNA无论怎么阅读,只可能是UCU-CUC,翻译的多肽也是由丝氨酸和亮氨酸之间排列的顺序,但尚不能确定这两种氨基酸的相应密码子。当重复顺序为(UUC)n时,无论怎么阅读,都只产生三种多聚氨基酸,即poly Ser、poly Leu和polyPhe,和第一次比较,只有一个密码子UCU相同,但同样都有Ser和Leu,所以仍不能确定。再看第三行重复顺序(UUAC)n,无论怎么读法,只会是四个密码子的循环:UUA-CUU-ACU-UAC,但合成的肽链中氨基酸三种,-Leu-Leu-Thr-Tyr。将密码子和氨基酸与第二次作对照,彼此共有密码子CUU和Leu,所以可以确定CUU是Leu的密码子。那么第二栏中既然CUU已知是亮氨酸,毫无疑问UCU是丝氨酸。第一栏中原来UCU-CUC难以确定哪一个是Ser,哪一个是Leu,现已确定UCU是Ser,那么余下的CUC定是亮氨酸了。Khorara就用这种方法将所有的遗传密码都破译了。这项实验还同时证实了三联密码的正确性,以及简并性的存在。
由于Nirenberg和Khorara二人在破译遗传密码研究中的卓越贡献,他们二人共同获得了1968年的诺贝尔化学奖。
●板书设计
第3节 遗传密码的破译(选学)
●习题详解
一、练习(课本P76)
(一)基础题
1.解析:3个碱基编码一种氨基酸,4种碱基组成三联密码,经排列组合可产生43=64种不同形式。
答案:D
2.此题要求学生学会对比的方法:
项 目
莫尔斯电码
遗传密码
密码间有无分隔符
有分隔符“/”
无分隔符
长度是否固定
长度不固定,1到4个符号不等
长度固定,3个符号
阅读方式是否重叠
非重叠方式阅读
非重叠方式阅读
密码所采用的符号
—·
ACGU
遗传密码的特点:不间断性、不重叠性、简并性、通用性。
(二)拓展题
克里克的T4噬菌体实验
尼伦伯格体外蛋白质合成实验
主要思路
通过研究碱基的改变对蛋白质合成的影响推断遗传密码的性质
建立体外蛋白质合成系统,直接破解遗传密码规则
前 提
找到使DNA脱落或插入单个碱基的方法——原黄素处理
多核苷酸磷酸化酶的发现,为得到poly U提供条件
优 势
不需要理解蛋白质合成过程,就能作出推断密码子的总体特征
快速、直接
不 足
证据相对间接,工作量较大
需要首先了解细胞中蛋白质合成所需的条件
二、问题探讨(课本P73)
1.“where are genes located”。
2.—··/—·/· 基因位于DNA上
3.(略)
三、本节聚焦(课本P73)
1.参见课堂小结和教师精讲。
2.遗传密码的特点:不间断性、不重叠性、简并性、通用性。
四、思考与讨论(课本P74)
1.以非重叠方式阅读,一个碱基发生改变,则会影响一个氨基酸。
以重叠方式阅读,一个碱基发生改变,则会影响三个氨基酸。
2.以非重叠方式阅读:
如果插入1个碱基,影响后面所有氨基酸。
如果插入2个碱基,也会影响后面所有氨基酸。
如果插入3个碱基,则产生的多肽比原正常多肽多1个氨基酸。
以重叠方式阅读:
如果插入1个碱基,影响3个氨基酸,多肽比原正常多肽多1个氨基酸。
如果插入2个碱基,影响4个氨基酸,多肽比原正常多肽多2个氨基酸。
如果插入3个碱基,影响5个氨基酸,多肽比原正常多肽多3个氨基酸。
五、旁栏思考题(课本P75)
1.防止细胞原有的DNA和mRNA中的遗传信息起作用干扰实验结果。
2.在对照实验中的所有试管中加入成分均不变,但是不加入多聚尿嘧啶核苷酸。