辽宁省大连市2019年普通高中学生学业水平考试高二模拟数学试题 Word版含答案

文档属性

名称 辽宁省大连市2019年普通高中学生学业水平考试高二模拟数学试题 Word版含答案
格式 zip
文件大小 183.0KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2019-03-14 12:39:19

图片预览

文档简介

2019年大连市普通高中学生学业水平考试模拟试卷
数 学
(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 满分100分,考试时间90分钟)

参考公式:
柱体体积公式 ,锥体体积公式 (其中为底面面积,为高); 球的表面积公式 (其中为球的半径).
第I卷
一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
(1)集合,则=( )
(A) (B) (C) (D)
(2)函数在区间[-2,-1]上的最大值是( )
(A)1 (B)2 (C)4 (D)
(3)函数的最小正周期是( )
(A) (B) (C) (D)
(4)已知,则的值是 ( )
(A) 0 (B) –1 (C) 1 (D) 2
(5)如图所示,一个空间几何体的主视图和左视图都是边长为
1的正方形,俯视图是一个直径为1的圆,那么这个几何体的
表面积为( )
(A) (B) (C) (D)
(6)已知向量,向量,若,则实数的值为( )
(A) (B)3 (C) (D)1
(7)在某次考试中,共有100个学生参加考试,如果某题的得分情况如下
得分
0分
1分
2分
3分
4分
百分率
37.0
8.6
6.0
28.2
20.2
那么这些得分的众数是( )
(A)37.0% (B)20.2% (C)0分 (D)4分
(8)若回归直线的方程为,则变量x 增加一个单位时 ( )
(A)y 平均增加1.5个单位 (B) y 平均增加2个单位
(C)y 平均减少1.5个单位 (D) y 平均减少2个单位
(9)若直线过点且与直线垂直,则的方程为( )
(A) (B)
(C) (D)
(10)已知,,若,则点的坐标为( )
(A) (B) (C) (D)
(11)对于不同直线以及平面,下列说法中正确的是( )
(A)如果,则 (B)如果,则
(C)如果,则 (D)如果,则
(12)等差数列{an}中,a2+a5+a8=12,那么函数x2+(a4+a6)x+10零点个数为( )
(A)0 (B)1 (C)2 (D)1或2
第Ⅱ卷
二、填空题:本大题共4小题,每小题3分,共12分.
(13) 某超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有20种、15种和10种, 现采用分层抽样的方法抽取一个容量为的样本进行安全检测,若果蔬类抽取4种,则为  .
(14)圆C的方程是x2+y2+2x+4y=0,则圆的半径是 .
(15)直线的斜率是3,且过点A(1,-2),则直线的方程是 . 
(16)若实数x,y满足,则y的最大值是 .
三、解答题:本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满分10分)
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,
PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明 PA//平面EDB;
(Ⅱ)证明PB⊥平面EFD.
(18)(本小题满分10分)
等差数列中,
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和.
(19)(本小题满分10分)
已知的三个内角A,B,C的对边分别为a,b,c.若.
(Ⅰ)求角C的大小;
(Ⅱ)若的面积为,c=,求的周长.?

(20)(本小题满分10分)
已知圆的圆心在直线上,且与轴正半轴相切,点与坐标原点的距离为.
(Ⅰ)求圆的标准方程;
(Ⅱ)斜率存在的直线过点且与圆相交于两点,求弦长的最小值.
(21)(本小题满分10分)
已知函数,.
(Ⅰ)若为偶函数,求的值并写出的增区间;
(Ⅱ)若关于的不等式的解集为,当时,求的最小值;
(Ⅲ)对任意的,,不等式恒成立,求实数的取值范围.
2019年大连市普通高中学生学业水平考试模拟试卷
数学参考答案与评分标准
说明:
一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.
四、只给整数分数,选择题和填空题不给中间分.
一、选择题
(1)(D);(2)(C);(3)(B);(4)(A);(5)(A);(6)(B);(7)(C);(8)(C);(9)(A);
(10)(D);(11)(D);(12)(C).
二、填空题
(13)9;(14);(15) ; (16)2.
三、解答题
(17)(本小题满分10分)
证明:(Ⅰ)连结,交于.连结.∵ 底面是正方形,∴ 点是的中点.在△中,是中位线,∴ //.而平面,
且平面,所以,//平面. ·······································5分
(Ⅱ)∵ ⊥底面,且底面,∴ ⊥.
∵ 底面是正方形,有⊥,,平面,
平面,∴ ⊥平面. 而平面,∴⊥.
又∵,是的中点,∴ ⊥,,
平面,平面.∴ ⊥平面.而平面,
∴ ⊥.又⊥,且,平面,
平面,所以⊥平面.··············································10分
(18)(本小题满分10分)
解:(Ⅰ)设等差数列的公差为,,
,······························································3分
,······································································4分
.······································································5分
(Ⅱ),················································7分
.··················10分
(19)解:(Ⅰ)由及正弦定理
得,··································································2分
由余弦定理,···············································4分
,.··································································5分
(Ⅱ)由(1)知,,.··············7分
由余弦定理,,····························8分
,,·························································9分
周长为.······························································10分
(20)解:(Ⅰ)由题可设,半径,.········3分
圆与轴正半轴相切,··················································4分
圆的标准方程:.··············································5分
(Ⅱ)设直线的方程:,··················································6分
点到直线的距离,·························································8分
弦长,·······························································9分
当时,弦长的最小值.···············································10分
(21)解:(Ⅰ),增区间为.···················································2分
(Ⅱ)由题,·····································································3分
················································4分
,,,··································5分
当且仅当,即时取等,.·····················6分
(Ⅲ),,.·································7分
在上恒成立.
设,
当,即时,,,
.········································································9分
当,即时,,
,.·······························
当,即时,,,···············11分
为空集. 综上,.···················································12分
同课章节目录