湘教版2018-2019学年度下学期第1学月考试九年级数学试卷(含解析)

文档属性

名称 湘教版2018-2019学年度下学期第1学月考试九年级数学试卷(含解析)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 湘教版
科目 数学
更新时间 2019-03-15 14:50:32

图片预览

文档简介

2018-2019湘教版版九年级下第1学月考试试卷
姓名:__________班级:__________考号:__________
题号



总分
得分
、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km,数1500000用科学记数法表示为(  )
A.15×105 B.1.5×106 C.0.15×107 D.1.5×105
将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是(  )
A. B. C. D.
互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为(  )
A.120元 B.100元 C.80元 D.60元
已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是( )
A.5 B.6 C.7 D.8
如图,直线a∥b,∠1=72°,则∠2的度数是(  )
A.118° B.108° C.98° D.72°
若m是任意实数,则点M(m2+2,﹣2)在第(  )象限.
A.一 B.二 C.三 D.四
下列各对数值中,是方程的解的是( )
A.
关于x的分式方程+5=有增根,则m的值为(  )
A.1 B.3 C.4 D.5
如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有(  )
A. 4对 B. 6对 C. 8对 D. 9对
下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律拼成第6个图案需小木棒(  )根.
A.53 B.54 C.55 D.56
如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA.OB上异于点O的动点,则△PMN周长的最小值是(  )
A. B. C. 6 D. 3
如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB=,∠EFA=60°,则四边形A′B′EF的周长是(  )
A.1+3 B.3+ C.4+ D.5+
、填空题(本大题共6小题,每小题3分,共18分)
五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是   .
如图,AD、AE分别是△ABC的高和角平分线,∠B=58°,∠C=36°,∠EAD=_____.
如图,△ABC≌△ADE,∠1=30°,则∠2=______.
若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为   .
关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m-1)2+(n-1)2≥2;③-1≤2m-2n≤1.其中正确结论是__________
如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为      .
、解答题(本大题共8小题,共66分)
计算:()﹣1﹣4sin60°﹣(1﹣)0+.
如图,在△ABC中,点O是∠ABC,∠ACB的平分线的交点,OD⊥BC于点D,△ABC的周长是20,OD=5,求△ABC的面积.
如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.
(1)分别计算获一、二、三等奖的概率.
老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?
如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.
求证:(1)AC是⊙D的切线;
(2)AB+EB=AC.
如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.
(1)求反比例函数的解析式;
(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.
如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.
(1)求∠EPF的大小;
(2)若AP=10,求AE+AF的值;
(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.
如图,矩形AOCB的顶点A.C分别位于x轴和y轴的正半轴上,线段OA.OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
如图,抛物线y=x2+bx+c与x轴交于A.B两点,B点坐标为(4,0),与y轴交于点C(0,4).
(1)求抛物线的解析式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
(3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;
②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.
答案解析
、选择题
【考点】科学记数法—表示较大的数
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
解:1500000=1.5×106,
故选:B.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
【考点】点、线、面、体
【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.
解:绕直线l旋转一周,可以得到圆台,
故选:D.
【点评】本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答.
【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.
解:设该商品的进价为x元/件,
依题意得:(x+20)÷=200,
解得:x=80.
∴该商品的进价为80元/件.
故选C.
【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.
【考点】频数(率)分布直方图
【分析】频数分布直方图中,各个长方形的高之比依次为2:3:4:1,则指各组频数之比为2:3:4:1,据此即可求出第四小组的频数.
解:∵频数分布直方图中各个长方形的高之比依次为2:3:4:1,样本容量为50,
∴第四小组的频数为50×=5.
故选A.
【点评】此题考查了频数(率)分布直方图,要知道,频数分布直方图中各个长方形的高之比即为各组频数之比.
【考点】平行线的性质.
【分析】根据平行线的性质,以及邻补角的定义进行计算即可.
解:∵直线a∥b,
∴∠2=∠3,
∵∠1=72°,
∴∠3=108°,
∴∠2=108°,
故选:B.
【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等. 
【考点】点的坐标.
【分析】根据平方数非负数的性质判断出点M的横坐标是正数,再根据各象限内点的坐标特征解答.
解:∵m2≥0,
∴m2+2≥2,
∴点M(m2+2,﹣2)在第四象限.
故选D.
【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 
【考点】二元一次方程的解
【分析】根据使二元一次方程左右相等的未知数的值,可得答案.
解:把x=0,y=6代入得:0-3×6=-18≠6,左边≠右边,
∴选项A不是方程的解;
把x=-3,y=-0代入得:-3-3×0=-3≠6,左边≠右边,
∴选项B不是方程的解;
把x=-3,y=1代入得:-3-3×1=-6≠6,左边≠右边,
∴选项C不是方程的解;
把x=3,y=-1代入得:3-3×(-1)=6,左边=右边,
∴选项D是方程的解;
故选:D.
【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.
【考点】分式方程的增根.
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.
解:方程两边都乘(x﹣1),
得7x+5(x﹣1)=2m﹣1,
∵原方程有增根,
∴最简公分母(x﹣1)=0,
解得x=1,
当x=1时,7=2m﹣1,
解得m=4,
所以m的值为4.
故选C.
【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为,②确定增根,化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值。 
【考点】一元一次不等式组的整数解
【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.
解:不等式组的解集为<x≤.
∵不等式组的整数解仅有7,8,9,
∴6≤<7,9≤<10,
解得15≤a<17.5,21≤b<.
∴a=15,16或17,b=21,22或23.
∴有序数对有(15,21),(15,22),(15,23),(16,21),(16,22),(16,23),(17,21),(17,22),(17,23),共9对.
故选D.
【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.
【考点】规律型:图形的变化类.
【分析】根据第1个图案需4根火柴,4=1×(1+3),第2个图案需10根火柴,10=2×(2+3),第3个图案需18根火柴,18=3×(3+3),得出规律第n个图案需n(n+3)根火柴,再把n=6代入即可求出答案.
解:∵拼搭第1个图案需4根火柴:4=1×(1+3),
拼搭第2个图案需10根火柴:10=2×(2+3),
拼搭第3个图案需18根火柴,18=3×(3+3),
拼搭第4个图案需28根火柴,28=4×(4+3),
…,
第n个图案需n(n+3)根火柴,
则第6个图案需:6×(6+3)=54(根);
故选:B.
【点评】本题考查规律型:图形的变化,解题的关键是从一般到特殊,找出规律,然后根据规律解决问题,属于中考常考题型.
【考点】轴对称-最短路线问题,含30度的直角三角形
【分析】作P点分别关于OA.OB的对称点C、D,连接CD分别交OA.OB于M、N,如
图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.
解:作P点分别关于OA.OB的对称点C、D,连接CD分别交OA.OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,
∴OH=OC=,
CH=OH=,
∴CD=2CH=3.
故选D.
【点睛】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
【考点】折叠的性质,锐角三角函数,等边三角形的判定和性质,四边形的周长公式
【分析】先在直角三角形EFG中用勾股定理求出EF,FG,再判断出三角形A'EF是等边三角形,求出AF,从而得出BE=B'E=1,最后用四边形的周长公式即可.
解:如图,
过点E作EG⊥AD,
∴∠AGE=∠FGE=90°
∵矩形纸片ABCD,
∴∠A=∠B=∠AGE=90°,
∴四边形ABEG是矩形,
∴BE=AG,EG=AB=,
在Rt△EFG中,∠EFG=60°,EG=,
∴FG=1,EF=2,
由折叠有,A'F=AF,A'B'=AB=,BE=B'E,∠A'FE=∠AFE=60°,
∵BC∥AD,
∴∠A'EF=∠AFE=60°,
∴△A'EF是等边三角形,
∴A'F=EF=2,
∴AF=A'F=2,
∴BE=AG=AF﹣FG=2﹣1=1
∴B'E=1
∴四边形A′B′EF的周长是A'B'+B'E+EF+A'F=+1+2+1=4+,
故选C.
【点评】此题是折叠问题,主要考查了折叠的性质,锐角三角函数,等边三角形的判定和性质,四边形的周长公式,解本题的关键是求出EF,FG. 
、填空题
【考点】中位数
【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案.
解:把数据从小到大排列:5,5,7,8,10,
中位数为7,
故答案为:7.
【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 
【考点】三角形内角和定理,角平分线的定义
【分析】先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠BAE的度数,由直角三角形的性质求出∠BAD的度数,根据∠EAD=∠BAE?∠BAD即可得出结论.
解:∵△ABC中,∠B=58°,∠C=36°,
∴∠BAC=180°?∠B?∠C=180°?58°?36°=86°,
∵AE是∠BAC的平分线,
∴∠BAE=∠BAC=×86°=43°,
∵AD⊥BC,
∴∠BAD=90°?∠B=90°?58°=32°,
∴∠EAD=∠BAE?∠BAD=43°?32°=11°.
故答案为:11°.
【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
【考点】全等三角形的性质
【分析】根据△ABC≌△ADE可以知道∠CAB=∠EAD,而∠EAB又是公共角,可以得到∠1=∠2,即可求得答案.
解:∵△ABC≌△ADE,
∴∠CAB=∠EAD,
又∵∠CAB=∠1+∠EAB,∠EAD=∠2+∠EAB,
∴∠1+∠EAB=∠2+∠EAB,
∴∠1=∠2,
又∵∠1=30°,
∴∠2=30°,
故答案为:30°.
【点评】本题主要考查了全等三角形的性质:全等三角形的对应角相等:①全等三角形的对应边上的高、中线以及对应角的平分线相等,②全等三角形的周长相等,面积相等,③平移、翻折、旋转前后的图形全等;关于全等三角形的性质应注意:①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.解答本题的关键就是找到对应角,然后利用∠EAB是公共角进行求解. 
【考点】因式分解的应用
【分析】根据a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2=ab[(a+b)2﹣4ab],结合已知数据即可求出代数式a3b﹣2a2b2+ab3的值.
解:∵a+b=2,ab=﹣3,
∴a3b+2a2b2+ab3=ab(a2+2ab+b2)
=ab(a+b)2
=ab[(a+b)2﹣2ab]
=3(4+6)
=30.
故答案为:30.
【点评】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.
【考点】根与系数的关系,根的判别式
【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2-2n≥0以及n2-2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.
解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1?x2=2n>0,y1?y2=2m>0, y1+y2=-2n<0, x1+x2=-2m<0, 这两个方程的根都为负根,①正确; ②由根判别式有: △=b2-4ac=4m2-8n≥0,△=b2-4ac=4n2-8m≥0, ∵4m2-8n≥0,4n2-8m≥0, ∴m2-2n≥0,n2-2m≥0, m2-2m+1+n2-2n+1=m2-2n+n2-2m+2≥2, (m-1)2+(n-1)2≥2,②正确; ③由根与系数关系可得2m-2n=y1y2+y1+y2=(y1+1)(y2+1)-1, 由y1、y2均为负整数,故(y1+1)?(y2+1)≥0,故2m-2n≥-1, 同理可得:2n-2m=x1x2+x1+x2=(x1+1)(x2+1)-1,得2n-2m≥-1,即2m-2n≤1,故③正确, 故填①②③
【点评】本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,根据不同结论灵活运用根与系数的关系是难点.
【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.
【分析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长.
解:∵△DAE逆时针旋转90°得到△DCM,
∴∠FCM=∠FCD+∠DCM=180°,
∴F、C、M三点共线,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,

∴△DEF≌△DMF(SAS),
∴EF=MF,
设EF=MF=x,
∵AE=CM=1,且BC=3,
∴BM=BC+CM=3+1=4,
∴BF=BM﹣MF=BM﹣EF=4﹣x,
∵EB=AB﹣AE=3﹣1=2,
在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
即22+(4﹣x)2=x2,
解得:x=,
∴FM=.
故答案为:.
【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用. 
、解答题
【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.
解:原式=2﹣4×﹣1+2=1.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
【考点】角平分线的性质
【分析】作OE⊥AB于E,OF⊥AC于F,连结OA,如图,根据角平分线的性质得OE=OF=OD=2,然后根据三角形面积公式和S△ABC=S△ABO+S△BCO+S△ACO进行计算即可.
解:如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.
∵点O是∠ABC,∠ACB平分线的交点,
∴OE=OD,OF=OD,即OE=OF=OD=3,
∴S△ABC=S△ABO+S△BCO+S△ACO=AB?OE+BC?OD+AC?OF
=×5×(AB+BC+AC)=×5×20=50.
【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.
【考点】概率公式.
【分析】(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率;找到黄色和蓝色区域的份数占总份数的多少即为获得二、三等奖的概率.
用有颜色的区域数除以所有扇形的个数即可求得中奖的概率.
解:(1)整个圆周被分成了16份,红色为1份,
∴获得一等奖的概率为:;
整个圆周被分成了16份,黄色为2份,
∴获得二等奖的概率为:=;
整个圆周被分成了16份,蓝色为4份,
∴获得三等奖的概率为=;
∵共分成了16份,其中有奖的有1+2+4=7份,
∴P(获奖)=;
老李摇奖共有四种结果,一等奖、二等奖、三等奖、不中奖.
【点评】此题考查了概率公式的应用.注意用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA.=,难度适中..
【考点】 切线的判定;直角三角形全等的判定.
【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.
(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.
证明:(1)过点D作DF⊥AC于F;
∵AB为⊙D的切线,AD平分∠BAC,
∴BD=DF,
∴AC为⊙D的切线.
(2)∵AC为⊙D的切线,
∴∠DFC=∠B=90°,
在Rt△BDE和Rt△FCD中;
∵BD=DF,DE=DC,
∴Rt△BDE≌Rt△FCD(HL),
∴EB=FC.
∵AB=AF,
∴AB+EB=AF+FC,
即AB+EB=AC.
【点评】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;
(2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.
解:(1)把x=2代入y=2x中,得y=2×2=4,
∴点A坐标为(2,4),
∵点A在反比例函数y=的图象上,
∴k=2×4=8,
∴反比例函数的解析式为y=;
(2)∵AC⊥OC,
∴OC=2,
∵A.B关于原点对称,
∴B点坐标为(﹣2,﹣4),
∴B到OC的距离为4,
∴S△ABC=2S△ACO=2××2×4=8,
∴S△OPC=8,
设P点坐标为(x,),则P到OC的距离为||,
∴×||×2=8,解得x=1或﹣1,
∴P点坐标为(1,8)或(﹣1,﹣8).
【点评】 本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键.
【考点】菱形的性质,锐角三角函数,特殊角的三角函数值
【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.
(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,
(3)根据运动情况及菱形的性质判断求出AP最大和最小值.
解:(1)过点P作PG⊥EF于点G,如图1所示.
∵PE=PF=6,EF=6,
∴FG=EG=3,∠FPG=∠EPG=∠EPF.
在Rt△FPG中,sin∠FPG===,
∴∠FPG=60°,
∴∠EPF=120°.
(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.
∵AC为菱形ABCD的对角线,
∴∠DAC=∠BAC,AM=AN,PM=PN.
在Rt△PME和Rt△PNF中,PM=PN,PE=PF,
∴Rt△PME≌Rt△PNF,
∴ME=NF.
又AP=10,∠PAM=∠DAB=30°,
∴AM=AN=APcos30°=10×=5,
∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.
(3)如图,
当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P1,P之间运动,
∴P1O=PO=3,AO=9,
∴AP的最大值为12,AP的最小值为6,
【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.
【考点】 一次函数综合题.
【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;
(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为?BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可分别得到S与t的函数关系式.
解:
(1)∵|x﹣15|+=0,
∴x=15,y=13,
∴OA=BC=15,AB=OC=13,
∴B(15,13);
(2)如图1,过D作EF⊥OA于点E,交CB于点F,
由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,
∵tan∠CBD=,
∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,
∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,
∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,
∴∠ONM=∠CBD,
∴=,
∵DE∥ON,
∴==,且OE=3,
∴=,解得OM=6,
∴ON=8,即N(0,8),
把N、B的坐标代入y=kx+b可得,解得,
∴直线BN的解析式为y=x+8;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,
当点N′在x轴上方,即0<t≤8时,如图2,
由题意可知四边形BNN′B′为平行四边形,且NN′=t,
∴S=NN′?OA=15t;
当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,
∵NN′=t,
∴可设直线B′N′解析式为y=x+8﹣t,
令y=0,可得x=3t﹣24,
∴OG=24,
∵ON=8,NN′=t,
∴ON′=t﹣8,
∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;
综上可知S与t的函数关系式为S=.
【考点】二次函数综合题
【分析】(1)利用待定系数法求抛物线的解析式;
(2)易得BC的解析式为y=﹣x+4,先证明△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+5t,然后利用二次函数的性质解决问题;
(3)①如图2,抛物线的对称轴为直线x=﹣点D的纵坐标的取值范围.
②由于△BCD是以BC为斜边的直角三角形有4+(y﹣3)2+1+y2=18,解得y1=,y2=,得到此时D点坐标为(,)或(,),然后结合图形可确定△BCD是锐角三角形时点D的纵坐标的取值范围.
解:(1)把B(4,0),C(0,4)代入y=x2+bx+c,得

解得 ,
∴抛物线的解析式为y=x2﹣5x+4;
(2)易得BC的解析式为y=﹣x+4,
∵直线y=x+m与直线y=x平行,
∴直线y=﹣x+4与直线y=x+m垂直,
∴∠CEF=90°,
∴△ECF为等腰直角三角形,
作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,
设P(t,t2﹣5t+4)(1<t<4),则G(t,﹣t+4),
∴PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,
∴PE=PG=﹣t2+2t,
∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣)2+,
当t=时,PE+EF的最大值为;
(3)①如图2,抛物线的对称轴为直线x=,
设D(,y),则BC2=42+42=32,DC2=()2+(y﹣4)2,BD2=(4﹣)2+y2=+y2,
当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即32+()2+(y﹣4)2=+y2,解得y=5,此时D点坐标为(,);
当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即32++y2=()2+(y﹣4)2,解得y=﹣1,此时D点坐标为(,﹣);
综上所述,符合条件的点D的坐标是(,)或(,﹣);
②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即()2+(y﹣4)2++y2=32,解得y1=,y2=,此时D点坐标为(,)或(,),
所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<或﹣<y<.

同课章节目录