2019年北师大版八下数学《第3章 图形的平移与旋转》单元测试卷(解析版)

文档属性

名称 2019年北师大版八下数学《第3章 图形的平移与旋转》单元测试卷(解析版)
格式 zip
文件大小 368.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-03-22 17:31:11

图片预览

文档简介

2019年北师大版八下数学《第3章 图形的平移与旋转》单元测试卷
一.选择题(共10小题)
1.将图中所示的图案平移后得到的图案是(  )

A. B. C. D.
2.下列运动属于平移的是(  )
A.冷水加热过程中小气泡上升成为大气泡
B.急刹车时汽车在地面上的滑动
C.投篮时的篮球运动
D.随风飘动的树叶在空中的运动
3.下列图形中,可以由其中一个图形通过平移得到的是(  )
A. B.
C. D.
4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为(  )

A.20cm B.22cm C.24cm D.26cm
5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是(  )

A.向左平移3个单位长度 B.向左平移1个单位长度
C.向上平移3个单位长度 D.向下平移1个单位长度
6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是(  )
A. B.
C. D.
7.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是(  )

A.35° B.45° C.55° D.65°
8.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是(  )

A.36° B.60° C.72° D.90°
9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是(  )

A.OC=OC′ B.OA=OA′
C.BC=B′C′ D.∠ABC=∠A′C′B′
10.下列图形是中心对称图形的是(  )
A. B.
C. D.
二.填空题(共5小题)
11.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为   米2.

12.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=   °.

13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为   .

14.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了   .
15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=   °.

三.解答题(共6小题)
16.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?

17.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)求证:AD∥BC;
(2)求∠DBE的度数;
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.

18.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.
(1)直接写出A、B、O三个对应点D、E、F的坐标;
(2)求△DEF的面积.

19.(1)计算: +﹣2﹣1;
(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是   ;在前16个图案中有   个;第2008个图案是   .

20.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图
(1)指出旋转中心,并求出旋转角的度数.
(2)求出∠BAE的度数和AE的长.

21.如图,已知AD=AE,AB=AC.
(1)求证:∠B=∠C;
(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?




2019年北师大版八下数学《第3章 图形的平移与旋转》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.将图中所示的图案平移后得到的图案是(  )

A. B. C. D.
【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【解答】解:通过图案平移得到必须与图案完全相同,角度也必须相同,
观察图形可知C可以通过图案平移得到.
故选:C.
【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
2.下列运动属于平移的是(  )
A.冷水加热过程中小气泡上升成为大气泡
B.急刹车时汽车在地面上的滑动
C.投篮时的篮球运动
D.随风飘动的树叶在空中的运动
【分析】根据平移的定义,对选项进行一一分析,排除错误答案.
【解答】解:A、冷水加热过程中小气泡上升成为大气泡,有大小变化,不符合平移定义,故错误;
B、急刹车时汽车在地面上的滑动是平移,故正确;
C、投篮时的篮球不沿直线运动,故错误;
D、随风飘动的树叶在空中不沿直线运动,故错误.
故选:B.
【点评】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.
3.下列图形中,可以由其中一个图形通过平移得到的是(  )
A. B.
C. D.
【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案.
【解答】解:∵只有B的图形的形状和大小没有变化,符合平移的性质,属于平移得到;
故选:B.
【点评】本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.
4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为(  )

A.20cm B.22cm C.24cm D.26cm
【分析】先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.
【解答】解:∵△ABC沿BC方向平移3cm得到△DEF,
∴DF=AC,AD=CF=3cm,
∵△ABC的周长为20cm,即AB+BC+AC=20cm,
∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),
即四边形ABFD的周长为26cm.
故选:D.
【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是(  )

A.向左平移3个单位长度 B.向左平移1个单位长度
C.向上平移3个单位长度 D.向下平移1个单位长度
【分析】直接利用平移中点的变化规律求解即可.
【解答】解:观察图形可得:图1与图2对应点所连的线段平行且相等,且长度是3;
故发生的变化是向左平移3个单位长度.
故选:A.
【点评】本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移中,对应点的对应坐标的差相等.
6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是(  )
A. B.
C. D.
【分析】此题是一组复合图形,根据平移、旋转的性质解答.
【解答】解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.
故选:D.
【点评】本题考查平移、旋转的性质:
①平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.
7.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是(  )

A.35° B.45° C.55° D.65°
【分析】根据旋转的性质即可求出答案.
【解答】解:由题意可知:∠DOB=85°,
∵△DCO≌△BAO,
∴∠D=∠B=40°,
∴∠AOB=180°﹣40°﹣110°=30°
∴∠α=85°﹣30°=55°
故选:C.
【点评】本题考查旋转的性质,解题的关键是正确理解旋转的性质,本题属于基础题型.
8.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是(  )

A.36° B.60° C.72° D.90°
【分析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.
【解答】解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.
【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是(  )

A.OC=OC′ B.OA=OA′
C.BC=B′C′ D.∠ABC=∠A′C′B′
【分析】根据中心对称的性质即可判断.
【解答】解:对应点的连线被对称中心平分,A,B正确;
成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.
故选:D.
【点评】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.
10.下列图形是中心对称图形的是(  )
A. B.
C. D.
【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【解答】解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误;
故选:B.
【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
二.填空题(共5小题)
11.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为 (ab﹣a﹣2b+2) 米2.

【分析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.
【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.
所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).
故答案为(ab﹣a﹣2b+2).
【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.
12.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3= 110 °.

【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.
【解答】解:延长直线,如图:,
∵直线a平移后得到直线b,
∴a∥b,
∴∠5=180°﹣∠1=180°﹣70°=110°,
∵∠2=∠4+∠5,
∵∠3=∠4,
∴∠2﹣∠3=∠5=110°,
故答案为:110.
【点评】此题考查平移问题,关键是根据平行线的性质和三角形的外角性质解答.
13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为 (3,2) .

【分析】根据平移的性质即可得到结论.
【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵﹣1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
14.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了 120° .
【分析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.
【解答】解:根据题意得,×360°=120°.
故答案为:120°.
【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.
15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= 55 °.

【分析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.
【解答】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′
∴∠ACA′=35°,∠A'DC=90°
∴∠A′=55°,
∵∠A的对应角是∠A′,即∠A=∠A′,
∴∠A=55°;
故答案为:55°.
【点评】此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.
三.解答题(共6小题)
16.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?

【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.
【解答】解;路等宽,得BE=DF,
△ABE≌△CDF,
由勾股定理,得BE==80(m)
S△ABE=60×80÷2=2400(m2)
路的面积=矩形的面积﹣两个三角形的面积
=84×60﹣2400×2
=240(m2).
答:这条小路的面积是240m2.
【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.
17.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)求证:AD∥BC;
(2)求∠DBE的度数;
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.

【分析】(1)根据平行线的性质,以及等量代换证明∠ADC+∠C=180°,即可证得AD∥BC;
(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,又由∠DBE=∠ABC,即可求得∠DBE的度数.
(3)首先设∠ABD=∠DBF=∠BDC=x°,由直线AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得∠BEC与∠ADB的度数,又由∠BEC=∠ADB,即可得方程:x°+40°=80°﹣x°,解此方程即可求得答案.
【解答】证明:(1)∵AB∥CD,
∴∠A+∠ADC=180°,
又∵∠A=∠C
∴∠ADC+∠C=180°,
∴AD∥BC;
(2)∵AB∥CD,
∴∠ABC=180°﹣∠C=80°,
∵∠DBF=∠ABD,BE平分∠CBF,
∴∠DBE=∠ABF+∠CBF=∠ABC=40°;
(3)存在.
设∠ABD=∠DBF=∠BDC=x°.
∵AB∥CD,
∴∠BEC=∠ABE=x°+40°;
∵AB∥CD,
∴∠ADC=180°﹣∠A=80°,
∴∠ADB=80°﹣x°.
若∠BEC=∠ADB,
则x°+40°=80°﹣x°,
得x°=20°.
∴存在∠BEC=∠ADB=60°.
【点评】此题考查了平行线的性质与平行四边形的性质.此题难度适中,解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.
18.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.
(1)直接写出A、B、O三个对应点D、E、F的坐标;
(2)求△DEF的面积.

【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A、B、O三个对应点D、E、F的坐标;
(2)把△DEF放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.
【解答】解:(1)∵点A(1,3),B(3,1),O(0,0),
∴把△ABO向下平移3个单位再向右平移2个单位后A、B、O三个对应点D(1+2,3﹣3)、E(3+2,1﹣3)、F(0+2,0﹣3),
即D(3,0)、E(5,﹣2)、F(2,﹣3);

(2)△DEF的面积:3×3﹣×1×3﹣×1×3﹣×2×2=4.

【点评】此题主要考查了坐标与图形的变化,关键是掌握平移后点的变化规律.
19.(1)计算: +﹣2﹣1;
(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是  ;在前16个图案中有 5 个;第2008个图案是  .

【分析】(1)根据绝对值,二次根式的性质化简原式,可得答案;
(2)分析可得,图形三个一组,且依次循环;10除3的余数为1,2008除3的余数为1,故第10个图案与第2008个图案相同,都是第一个图案,即;在前16个图案中有共5组,第六组只有第一个图案;故在前16个图案中有5个.
【解答】解:(1)原式==2;

(2)根据分析,知应分别为,5,.
【点评】本题考查代数式的化简及根据图形找规律的方法.
20.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图
(1)指出旋转中心,并求出旋转角的度数.
(2)求出∠BAE的度数和AE的长.

【分析】(1)先根据三角形内角和计算出∠BAC=150°,然后利用旋转的定义可判断旋转中心为点A,旋转角为150°;
(2)根据旋转的性质得到∠DAE=∠BAC=150°,AB=AD=4,AC=AE,利用周角定义可得到∠BAE=60°,然后利用点C为AD中点得到AC=AD=2,于是得到AE=2.
【解答】解:(1)在△ABC中,∵∠B+∠ACB=30°,
∴∠BAC=150°,
当△ABC逆时针旋转一定角度后与△ADE重合,
∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;
(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,
∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,
∴∠BAE=360°﹣150°﹣150°=60°,
∵点C为AD中点,
∴AC=AD=2,
∴AE=2.
【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
21.如图,已知AD=AE,AB=AC.
(1)求证:∠B=∠C;
(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?

【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.
(2)因为△ABE≌△ACD,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.
【解答】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;
∴△AEB≌△ADC,
∴∠B=∠C.

(2)解:先将△ADC绕点A逆时针旋转50°,
再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.
或先将△ADC绕点A顺时针旋转50°,
再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.
【点评】本题主要考查全等三角形的判定方法.证明全等寻找条件时,要善于观察题目中的公共角,公共边.