【备考2019】数学3年中考2年模拟专题复习学案 9.2 方案设计问题

文档属性

名称 【备考2019】数学3年中考2年模拟专题复习学案 9.2 方案设计问题
格式 zip
文件大小 909.5KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2019-04-02 08:32:50

文档简介

9.2 方案设计问题
方案设计型问题是设置一个实际问题的情景及信息,提出解决问题的要求,寻求恰当的解决方案,有时还要求判断最优方案.此类题主要考查学生的动手操作能力和实践能力.此类题的解题策略有三种:一是利用方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数;二是择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性;三是操作型问题:可运用中心对称、轴对称或旋转等几何知识去解决,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合,并遵循由特殊到一般、由简单到复杂的动手操作过程.
一、解答题
1.(2016?山西)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货;
方案B:每千克5元,客户需支付运费2 000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
2.(2016?河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.
3.(2016?湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?
(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?
4.(2017?佳木斯)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.
(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.
(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?
(3)在(2)的前提下,该企业决定投资不超过获得最大利润的 18 在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?
5.(2017?宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件)
购进所需费用(元)
A
B
第一次
30
40
3800
第二次
40
30
3200
(1)求A、B两种商品每件的进价分别是多少元?
(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
6.(2017?天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
7.(2018?广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
8.(2018?牡丹江)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:
(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);
(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?
(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.
9.(2018?巴彦淖尔)为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.
(1)甲乙两种票的单价分别是多少元?
(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?
10.(2018?武汉)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).
(1)求A、B型钢板的购买方案共有多少种?
(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.
题的关键.
11.(2018?龙东)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
12.(2018?咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车
乙种客车
载客量/(人/辆)
30
42
租金/(元/辆)
300
400
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为   辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
一、解答题
1.(2017·石家庄模拟)为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:
(1)分别求出通话费y1 , y2与通话时间x之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜.
2.(2017·赤峰二模)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡: ①金卡售价600元/张,每次凭卡不再收费. ②银卡售价150元/张,每次凭卡另收10元. 暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
3.(2017·六安一模)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.
4.(2017·周口模拟)某商店欲购进一批跳绳,若同时购进A种跳绳10根和B种跳绳7根,则共需395元,若同时购进A种跳绳5根和B种跳绳3根,共需185元
(1)求A、B两种跳绳的单价各是多少?
(2)若该商店准备同时购进这两种跳绳共100根,且A种跳绳的数量不少于跳绳总数量的 25 .若每根A种跳绳的售价为26元,每根B种跳绳的售价为30元,问:该商店应如何进货才可获取最大利润,并求出最大利润.
5.(2017·广水模拟)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
6.(2017·德阳模拟)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.
(1)求每个篮球和每个排球的销售利润;
(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.
7.(2018?荆州模拟)某共享单车公司提供了手机和会员卡两种支付方式.若用手机支付方式,骑行时间在半小时以内(含半小时)不收费,超出半小时后每半小时收费1元,若选择会员卡支付,骑行时间每半小时收费0.8元,设骑行时间为x小时.
(1)根据题意,填写下表(单位:元):
骑行时间(小时)
0.5
2
3

手机支付付款金额(元)
0

会员卡支付付款金额(元)
3.2

(2)设用手机支付付款金额为y1元,用会员卡支付付款金额为y2元,分别写出y1,y2关于x的函数关系式;
(3)若李老师经常骑行该公司的共享单车,他应选择哪种支付方式比较合算?
8.(2018?广州模拟)某校决定购买一些跳绳和排球,需要的跳绳数量是排球数量的3倍,购买的总费用不低于2200元,但不高于2500元.
(1)商场内跳绳的售价为20元/根,排球的售价为50元/个,按照学校所定的费用,有几种购买方案?每种方案中跳绳和排球数量各为多少?
(2)在(1)的方案中,哪一种方案的总费用最少?最少的费用是多少元?
9.(2018?邵阳模拟)某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图l、图2和图3所示(阴影部分为草坪).
请你根据这一问题,在每种方案中都只列出方程不解.
①甲方案设计图纸为图l,设计草坪的总面积为600平方米.
②乙方案设计图纸为图2,设计草坪的总面积为600平方米.
③丙方案设计图纸为图3,设计草坪的总面积为540平方米.
10.(2018?石狮模拟)甲、乙两个文具店均出售钢笔和笔记本,其中每支钢笔定价10元,每本笔记本定价5元.两个文具店在开展促销活动中,各自提出优惠方案如下:
甲店:买一支钢笔送一本笔记本;
乙店:买钢笔或笔记本都按定价的80%付款.
现小明要购买钢笔30支,笔记本x本(x>30).
(1)试用含x的代数式表示:
①小明到甲店购买所付款为 元;
②小明到乙店购买所付款为 元;
(2)当x=40时,你能帮小明设计一种最为省钱的购买方案吗?试写出你的购买方案,并说明理由.
11.(2018?武汉模拟)某电脑公司经销甲种型号电脑,每台售价4000元.为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.
(1)有几种进货方案?
(2)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少? 若考虑投入成本最低,则应选择哪种进货方案?
12.(2018?武汉二模)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2每辆60座客车租金共计1880元
(1) 求两种车租金每辆各多少元?
(2) 若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案
9.2 方案设计问题
方案设计型问题是设置一个实际问题的情景及信息,提出解决问题的要求,寻求恰当的解决方案,有时还要求判断最优方案.此类题主要考查学生的动手操作能力和实践能力.此类题的解题策略有三种:一是利用方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数;二是择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性;三是操作型问题:可运用中心对称、轴对称或旋转等几何知识去解决,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合,并遵循由特殊到一般、由简单到复杂的动手操作过程.
一、解答题
1.(2016?山西)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货;
方案B:每千克5元,客户需支付运费2 000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
【答案】(1)方案A:y=5.8x;方案B:y=5x+2 000(2)选用方案A比方案B付款少(3) B
【解析】(1)根据数量关系列出函数表达式即可;(2)先求出方案A应付款y与购买量x的函数关系为,方案B 应付款y与购买量x的函数关系为,然后分段求出哪种方案付款少即可;(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.
解:(1)方案A:函数表达式为.
方案B:函数表达式为
(2)由题意,得.
解不等式,得x<2500
∴当购买量x的取值范围为时,选用方案A比方案B付款少.
(3)他应选择方案B.
2.(2016?河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.
【答案】(1)一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)当购买A型灯37只,B型灯13只时,最省钱.
【解析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意列方程组,解方程组即可;(2)设购进A型节能灯m只,总费用为w元,根据题意求出w与x的函数关系式,再求得m的取值范围,根据一次函数的性质确定最省钱方案即可.
解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元.
依题意得,解得.
所以一只A型节能灯的售价是5元,一只B型节能灯的售价是7元.
(2)设购进A型节能灯m只,总费用为w元,
依题意得w=5m+7(50-m)=-2m+350,
因-2<0,∴当m取最大值时w有最小值.
∵m≤3(50-m),解得m≤37.5.
而m为整数,∴当m=37时,w最小=-2×37+350=276.
此时50-37=13.
所以最省钱的购买方案是购进A型节能灯37只,B型节能灯13只.
3.(2016?湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?
(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?
【答案】(1)甲商品的单价是每件100元,乙每件80元;(2)有3种进货方案.具体见解析;(3)当甲进48件,乙进52件时,最大的利润是1520元.
【解析】1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元,根据甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同即可列方程组求解;
(2)设甲进货x件,乙进货(100﹣x)件,根据两种商品的进货总价不高于9000元,两种商品全部售完后的销售总额不低于10480元即可列不等式组求解;
(3)把利润表示出甲进的数量的函数,利用函数的性质即可求解.
解:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.
根据题意得:x?y=2020x=25y,解得:x=100y=80.
答:甲商品的单价是每件100元,乙每件80元;
(2)设甲进货x件,乙进货(100﹣x)件.
根据题意得:100x+80(100?x)≤9000100(1+10%)x+80(100?x)(1+25%)≥1048,解得:48≤x≤50.
又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案.具体是:
方案一:甲进货48件,乙进货52件;
方案二:甲进货49件,乙进货51件;
方案三:甲进货50件,乙进货50件;
(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).
此时,乙进的件数是100﹣48=52(件).
答:当甲进48件,乙进52件时,最大的利润是1520元.
4.(2017?佳木斯)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.
(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.
(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?
(3)在(2)的前提下,该企业决定投资不超过获得最大利润的 18 在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?
【答案】答案见解析
【解析】(1)解:由题意y=x+1.5×2x+2(100﹣3x)=﹣2x+200 (2)解:由题意﹣2x+200≥180, 解得x≤10, ∵x≥8, ∴8≤x≤10. ∵x为整数, ∴x=8,9,10. ∴有3种种植方案, 方案一:种植西红柿8公顷、马铃薯76公顷、青椒16公顷. 方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷. 方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷 (3)解:∵y=﹣2x+200, ﹣2<0, ∴x=8时,利润最大,最大利润为184万元. 设投资A种类型的大棚a个,B种类型的大棚b个, 由题意5a+8b≤ 18 ×184, ∴5a+8b≤23, ∴a=1,b=1或2, a=2,b=1, a=3,b=1, ∴可以投资A种类型的大棚1个,B种类型的大棚1个, 或投资A种类型的大棚1个,B种类型的大棚2个, 或投资A种类型的大棚2个,B种类型的大棚1个, 或投资A种类型的大棚3个,B种类型的大棚1个
【点评】(1)总利润=三种蔬菜利润的总和,用x 的代数式分别表示三种利润即可;(2)由“总利润不低于180万元“可列不等式﹣2x+200≥180,取正整数解三个,就有三种方案;(3)由y=﹣2x+200(8≤x≤10),-2<0,y随x的增大而减小,故x=8时y最大=184万元,由题意列出不等式5a+8b≤?18×184,取整数解即可.
5.(2017?宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件)
购进所需费用(元)
A
B
第一次
30
40
3800
第二次
40
30
3200
(1)求A、B两种商品每件的进价分别是多少元?
(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
【答案】答案见解析
【解析】(1)解:设A种商品每件的进价为x元,B种商品每件的进价为y元, 根据题意得: {30x+40y=380040x+30y=3200 ,解得: {x=20y=80 . 答:A种商品每件的进价为20元,B种商品每件的进价为80元 (2)解:设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件, 根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000. ∵A种商品的数量不少于B种商品数量的4倍, ∴1000﹣m≥4m, 解得:m≤200. ∵在w=10m+10000中,k=10>0, ∴w的值随m的增大而增大, ∴当m=200时,w取最大值,最大值为10×200+10000=12000, ∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.
【解析】可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.
6.(2017?天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
【答案】答案见解析
【解析】(1)解:设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得 {x+2y=4002x+y=350 , 解得 {x=100y=150 , 答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元 (2)解:设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得 {100a+150(10?a)≤122060a+100(10?a)≥650 , 解得: 285 ≤a≤ 354 , 因为a是整数, 所以a=6,7,8; 则(10﹣a)=4,3,2; 三种方案: ①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元; ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元; ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元; 购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元
【解析】车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.
7.(2018?广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
【答案】(1)应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)x>10.
【解析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;
(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.
解:设购买A型号笔记本电脑x台时的费用为w元,
(1)当x=8时,方案一:w=90%a×8=7.2a,
方案二:w=5a+(8﹣5)a×80%=7.4a,
∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;
(2)∵若该公司采用方案二购买更合算,
∴x>5,
方案一:w=90%ax=0.9ax,
方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,
则0.9ax>a+0.8ax,
x>10,
∴x的取值范围是x>10.
【点评】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.
8.(2018?牡丹江)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:
(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);
(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?
(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.
【答案】(1)y=﹣53x+18(2)三种购买方案(3)甲种图书6套,乙种图书8套,丙种图书6套,a=10
【解析】(1) 根据题意得购进丙种图书(20﹣x﹣y)套,由7700元计划全部用于购进甲、乙、丙三种图书,可列出方程的y与x的函数关系式;
(2)由(1)得:y=﹣x+18,由书店购进甲、乙两种图书均不少于1套,可得,得出x的取值范围,由x,y,(20﹣x﹣y)为整数可得方案数;
(3)由(1)(2)得三种方案,按所获得的利润比(2)中某方案的利润多出20元进行比较,由a为正整数进行判断可得出答案.
解:(1)根据题意得购进丙种图书(20﹣x﹣y)套,则有500x+400y+250(20﹣x﹣y)=7700,
所以解析式为:y=﹣x+18;
(2)根据题意得:,
解得:x,
又∵x≥1,
∴,
因为x,y,(20﹣x﹣y)为整数,
∴x=3,6,9,
即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,
②甲、乙、丙三种图书分别为6套,8套,6套,
③甲、乙、丙三种图书分别为9套,3套,8套,
(3)若按方案一:则有13a﹣4a=20,解得a=(不是正整数,不符合题意),
若按方案二:则有8a﹣6a=20,解得a=10(符合题意),
若按方案三:则有3a﹣8a=20,解得a=﹣4(不是正整数,不符合题意),
所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10.
【点评】本题主要考查一次函数与不等式等知识的综合,注意运算的准确性及灵活根据题意进行方案选择.
9.(2018?巴彦淖尔)为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.
(1)甲乙两种票的单价分别是多少元?
(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?
【答案】(1)甲乙两种票的单价分别是24元、18元;(2)①甲种票买16张,乙种票买20张;?②甲种票买17张,乙种票买19张,
【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;
(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元和购买甲种票必须多于15张得到两个不等式,求出它们的公共部分,然后找出其中的整数,即可得到购买方案.
解:(1)设甲票价为4x元,乙为3x元,
∴3x+4x=42,解得x=6,
∴4x=24,3x=18,
所以甲乙两种票的单价分别是24元、18元;
(2)设买甲种票a张,则买乙种票(36-a)张,
24a+1836?a≤750a>15,
解得:15<a≤17,
∴a取16、17,
所以有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.
【点评】本题考查了一元一次不等式组的应用、一元一次方程的应用,弄清题意,找准等量关系或不等关系,列出方程或不等式组是解题的关键.
10.(2018?武汉)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).
(1)求A、B型钢板的购买方案共有多少种?
(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.
【答案】(1)A、B型钢板的购买方案共有6种;(2)购买A型钢板20块,B型钢板80块时,获得的利润最大.
【解析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;
(2)先建立总利润和x的关系,即可得出结论.
解:(1)购买A型钢板x块,则购买B型钢板(100﹣x)块,
根据题意得,2x+(100?x)≥120x+3(100?x)≥250,
解得,20≤x≤25,
∵x为整数,
∴x=20,21,22,23,24,25共6种方案,
即:A、B型钢板的购买方案共有6种;
(2)设总利润为w,根据题意得,
w=100[2x+(100﹣x)]+120[x+3(100﹣x)]=﹣140x+46000,
∵﹣140<0,∴y随着x的增大而减小,
∴当x=20时,wmax=﹣140×20+46000=43200元,
即:购买A型钢板20块,B型钢板80块时,获得的利润最大.
【点评】本题主要考查了一元一次不等式组的应用,一次函数的应用,弄清题意,正确找出题中的不等关系列出不等式组,找出数量间的关系列出函数解析式是解题的关键.
11.(2018?龙东)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
【答案】(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【解析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;
(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;
(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.
解:(1)设A城有化肥a吨,B城有化肥b吨,
根据题意,得b+a=500b?a=100,
解得a=200b=300,
答:A城和B城分别有200吨和300吨肥料;
(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,
从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,
设总运费为y元,根据题意,
则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
∵x≥0200?x≥0240?x≥060+x≥0,∴0≤x≤200,
由于函数是一次函数,k=4>0,
所以当x=0时,运费最少,最少运费是10040元;
(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,
所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,
当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;
当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;
当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【点评】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.
12.(2018?咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车
乙种客车
载客量/(人/辆)
30
42
租金/(元/辆)
300
400
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为   辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.
【解析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;
(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于30042=507(取整为8)辆,由此即可求出;
(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.
解:(1)设老师有x名,学生有y名,
依题意,列方程组为17x=y?1218x=y+4,
解得:x=16y=284,
答:老师有16名,学生有284名;
(2)∵每辆客车上至少要有2名老师,
∴汽车总数不能大于8辆;
又要保证300名师生有车坐,汽车总数不能小于30042=507(取整为8)辆,
综合起来可知汽车总数为8辆,
故答案为:8;
(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,
∵车总费用不超过3100元,
∴400x+300(8﹣x)≤3100,
解得:x≤7,
为使300名师生都有座,
∴42x+30(8﹣x)≥300,
解得:x≥5,
∴5≤x≤7(x为整数),
∴共有3种租车方案:
方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;
方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;
方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;
故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.
【点评】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.
一、解答题
1.(2017·石家庄模拟)为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:
(1)分别求出通话费y1 , y2与通话时间x之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜.
【答案】答案见解析
【解析】(1)解:设y1=kx+b,将(0,29),(30,35)代入, 解得k= 15 ,b=29,∴ y1=15x+29 , 又24×60×30=43200(min) ∴ y1=15x+29 (0≤x≤43200), 同样求得 y2=12x(0≤x≤43200) ; (2)解:当y1=y2时, 15x+29=12x,x=9623 ; 当y1<y2时, 15x+29<12x,x>9623 . 所以,当通话时间等于96 23 min时,两种卡的收费相等, 当通话时间小于 9623 mim时,“如意卡便宜”, 当通话时间大于 9623 min时,“便民卡”便宜
【点评】(1)设y1=kx+b,将(0,29),(30,35)代入,得出方程组求解就可以求出通话费y1与通话时间x之间的函数关系式;同理求出通话费y2与通话时间x之间的函数关系式;(2)分三种情况讨论当y1=y2时得方程组求解即可,当y1<y2时的不等式组求解即可,当y1>y2时得不等式组求解即可;最后写出结论。
2.(2017·赤峰二模)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡: ①金卡售价600元/张,每次凭卡不再收费. ②银卡售价150元/张,每次凭卡另收10元. 暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
【答案】答案见解析
【解析】(1)解:由题意可得:银卡消费:y=10x+150,普通消费:y=20x (2)解:由题意可得:当10x+150=20x, 解得:x=15,则y=300, 故B(15,300), 当y=10x+150,x=0时,y=150,故A(0,150), 当y=10x+150=600, 解得:x=45,则y=600, 故C(45,600) (3)解:如图所示:由A,B,C的坐标可得: 当0<x<15时,普通消费更划算; 当x=15时,银卡、普通票的总费用相同,均比金卡合算; 当15<x<45时,银卡消费更划算; 当x=45时,金卡、银卡的总费用相同,均比普通票合算; 当x>45时,金卡消费更划算.
【点评】(1)根据已知银卡售价150元/张,每次凭卡另收10元.普通票价20元/张,设游泳x次时,分别得出所需总费用y与x的函数关系式即可。 (2)利用函数图像交点坐标得求法即可求出A、B、C三点坐标。 (3)利用(2)的交点坐标,及结合函数图像观察即可得出结论。
3.(2017·六安一模)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.
【答案】答案见解析
【解析】(1)解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元, 依题意得: {2x+3y=2703x+2y=230 ,解得: {x=30y=70 , 答:甲种商品每件的进价为30元,乙种商品每件的进价为70元 (2)解:设该商场购进甲种商品m件,则购进乙种商品(100-m)件, 由已知得:m≥4(100-m) 解得:m≥80. 设卖完甲、乙两种商品商场的利润为w, 则w=(40﹣30)m+(90﹣70)=﹣10m+2000, ∴当m=80时,w取最大值,最大利润为1200元. 故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.
【点评】(1)用二元一次方程组即可列出两个等量关系式,并求出甲、乙的单价; (2)因为甲乙共100件,设甲为m件,所以乙应购进(100-m),根据题意可列出不等量关系,求出m的取值范围;总利润为甲的利润加上乙的利润,所以甲的单件利润乘以件数即为甲的利润,同理可求出乙的利润;当m 越小时,总利润越大,所以当m=80时,总利润最大.
4.(2017·周口模拟)某商店欲购进一批跳绳,若同时购进A种跳绳10根和B种跳绳7根,则共需395元,若同时购进A种跳绳5根和B种跳绳3根,共需185元
(1)求A、B两种跳绳的单价各是多少?
(2)若该商店准备同时购进这两种跳绳共100根,且A种跳绳的数量不少于跳绳总数量的 25 .若每根A种跳绳的售价为26元,每根B种跳绳的售价为30元,问:该商店应如何进货才可获取最大利润,并求出最大利润.
【答案】答案见解析
【解析】(1)解:设A种跳绳的单价为x元,B种跳绳的单价为y元, 根据题意,得 {10x+7y=3955x+3y=185 ,解得 {x=22y=25 , 答:A种跳绳的单价为22元,B种跳绳的单价为25元 (2)解:设购进A种跳绳a根,则B种跳绳(100-a)根,该商店的利润为w元, 则w=(26-22)a+(30-25)(100-a)=-a+500, ∵-1< 0 ,∴a取最小值时,w取最大值, 又∵a ≥100× 25 =40,且a为整数, ∴当a =40时,w最大=-40+500=460(元), 此时,100-40=60, 所以该商店购进A种跳绳40根,B种跳绳60根时可获得最大利润,最大利润为460元
【点评】(1)此题的等量关系是:购进A种跳绳10根的费用+B种跳绳7根的费用=395;若购进A种跳绳5根的费用+B种跳绳3根的费用=185,设未知数列方程组求解即可。 (2)根据W=A跳绳的数量×每根A跳绳利润+B跳绳的数量×每根B跳绳利润,列出W与a之间的函数关系式,再根据题意求出a的取值范围,利用一次函数的性质即可求解。
5.(2017·广水模拟)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
【答案】答案见解析
【解析】(1)解:设y与x的函数关系式为y=kx+b. 把(22,36)与(24,32)代入,得 {22k+b=3624k+b=32 ? 解得 {k=?2b=80 ? ∴y=-2x+80. (2)解:设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得 (x-20)y=150,即(x-20)(-2x+80)=150. 解得x1=25,x2=35(舍去). 答:每本纪念册的销售单价是25元 (3)解:由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200. ∵售价不低于20元且不高于28元, 当x<30时,y随x的增大而增大, ∴当x=28时,w最大=-2×(28-30)2+200=192(元).?? 答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元
【点评】(1)将实际问题转化为数学问题,此题是一次函数的应用,可得出两点坐标(22,36)与(24,32),利用待定系数法求出函数解析式即可。 (2)根据利润=每件的利润×销售量,建立方程求解,再根据每本纪念册的售价不低于20元且不高于28元,即可求解。 (3)根据利润=每件的利润×销售量,建立二次函数,求出其顶点坐标,再根据售价不低于20元且不高于28元及二次函数的增减性,求出最大利润即可。
6.(2017·德阳模拟)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.
(1)求每个篮球和每个排球的销售利润;
(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.
【答案】答案见解析
【解析】(1)解:设每个篮球和每个排球的销售利润分别为x元,y元, 根据题意得: {7x+9y=35510x+20y=650 , 解得: {x=25y=20 , 答:每个篮球和每个排球的销售利润分别为25元,20元 (2)解:设购进篮球m个,排球(100﹣m)个, 根据题意得: {200m+160(100?m)≤17400m≥100?m2 , 解得: 1003 ≤m≤35, ∴m=34或m=35, ∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案
【点评】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.
7.(2018?荆州模拟)某共享单车公司提供了手机和会员卡两种支付方式.若用手机支付方式,骑行时间在半小时以内(含半小时)不收费,超出半小时后每半小时收费1元,若选择会员卡支付,骑行时间每半小时收费0.8元,设骑行时间为x小时.
(1)根据题意,填写下表(单位:元):
骑行时间(小时)
0.5
2
3

手机支付付款金额(元)
0

会员卡支付付款金额(元)
3.2

(2)设用手机支付付款金额为y1元,用会员卡支付付款金额为y2元,分别写出y1,y2关于x的函数关系式;
(3)若李老师经常骑行该公司的共享单车,他应选择哪种支付方式比较合算?
【答案】(1)3,5;0.8,4.8.(2)当0≤x≤0.5时,y1=0;x>0.5时,y1=x?0.50.5×1=2x–1;y2=1.6x(x≥0)(3)李老师应该根据自己的骑行时间,选择合适的付费方式.
【解析】(1)用手机支付方式,骑行时间在半小时以内(含半小时)不收费,超出半小时后每半小时收费1元,所以骑行2小时,收费(2–0.5)÷0.5×1=3(元);骑行3小时,收费(3–0.5)÷0.5×1=5(元);
用会员卡支付,骑行时间每半小时收费0.8元,
所以所以骑行0.5小时,收费0.5÷0.5×0.8=0.8(元),骑行3小时,收费3÷0.5×0.8=4.8(元);
故答案为:3,5;0.8,4.8.
(2)骑行x小时用手机支付方式,当0≤x≤0.5时,y1=0;
x>0.5时,y1=x?0.50.5×1=2x–1;
骑行x小时用会员卡支付方式y2=1.6x(x≥0).
(3)当y1=y2时,即2x–1=1.6x,解得x=2.5,
当骑行时间为2.5小时时,两种支付方式价格相同;
当0≤x≤2.5时,y12.5时,y1>y2,所以会员卡支付合算.
李老师应该根据自己的骑行时间,选择合适的付费方式.
8.(2018?广州模拟)某校决定购买一些跳绳和排球,需要的跳绳数量是排球数量的3倍,购买的总费用不低于2200元,但不高于2500元.
(1)商场内跳绳的售价为20元/根,排球的售价为50元/个,按照学校所定的费用,有几种购买方案?每种方案中跳绳和排球数量各为多少?
(2)在(1)的方案中,哪一种方案的总费用最少?最少的费用是多少元?
【答案】(1)有三种购买方案:方案一:跳绳60根,排球20个;方案二:跳绳63根,排球21个;方案三:跳绳66根,排球22个;
(2)方案一购买的总数量最少,所以总费用最少,最少费用为2200元.
【解析】(1)设购买跳绳x根,则购买排球13x个,由题意得到关于x的不等式组,解得60≤x≤68211,再根据x,13x都必须为整数,得到x,13x的可能值;
(2)根据(1)即可求得答案.
解:(1)设购买跳绳x根,则购买排球13x个,
根据题意得:20x+50×13x≥220020x+50×13x≤2500,
解得60≤x≤68211,
∵x为正整数,
∴x可取60,61,62,63,64,65,66,67,68,
∵13x也必需是整数,
∴13x可取20,21,22;
∴有三种购买方案:
方案一:跳绳60根,排球20个;
方案二:跳绳63根,排球21个;
方案三:跳绳66根,排球22个.
(2)在(1)中,方案一购买的总数量最少,所以总费用最少,
最少费用为:60×20+20×50=2200.
答:方案一购买的总数量最少,所以总费用最少,最少费用为2200元.
9.(2018?邵阳模拟)某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图l、图2和图3所示(阴影部分为草坪).
请你根据这一问题,在每种方案中都只列出方程不解.
①甲方案设计图纸为图l,设计草坪的总面积为600平方米.
②乙方案设计图纸为图2,设计草坪的总面积为600平方米.
③丙方案设计图纸为图3,设计草坪的总面积为540平方米.
【答案】:①(35?2x)(20?2x)=600;②(35?x)(20?x)=600;③(35?2x)(20?x)=540
【解析】①设道路的宽为x米.长应该为35﹣2x,宽应该为20﹣2x;那么根据草坪的面积为600m2 ,即可得出方程;
②如果设路宽为xm,草坪的长应该为35﹣x,宽应该为20﹣x;那么根据草坪的面积为600m2,即可得出方程;
③如果设路宽为xm,草坪的长应该为35﹣2x,宽应该为20﹣x;那么根据草坪的面积为540m2 , 即可得出方程.
解:①设道路的宽为x米.依题意得:(35﹣2x)(20﹣2x)=600;
②设道路的宽为x米.依题意得:(35﹣x)(20﹣x)=600;
③设道路的宽为x米.依题意得:(35﹣2x)(20﹣x)=540.
10.(2018?石狮模拟)甲、乙两个文具店均出售钢笔和笔记本,其中每支钢笔定价10元,每本笔记本定价5元.两个文具店在开展促销活动中,各自提出优惠方案如下:
甲店:买一支钢笔送一本笔记本;
乙店:买钢笔或笔记本都按定价的80%付款.
现小明要购买钢笔30支,笔记本x本(x>30).
(1)试用含x的代数式表示:
①小明到甲店购买所付款为 元;
②小明到乙店购买所付款为 元;
(2)当x=40时,你能帮小明设计一种最为省钱的购买方案吗?试写出你的购买方案,并说明理由.
【答案】(1)(1)①5x+150; ②4x+240;(2)应选择方案三最为省钱,理由见解析.
【解析】(1)根据甲乙两店的优惠方案列出各自的代数式即可;
(2)把x=40代入各方案,比较即可.
解:(1)①[30×10+5(x?30)],即5x+150;
②(30×10+5x)×80%,即4x+240;
故答案为:①5x+150;②4x+240;
(2)方案一:小明所要的30支钢笔和40本笔记本都在甲店购买,则他应付款为:30×10+5×(40?30)=350(元);
方案二:小明所购的30支钢笔和40本笔记本都在乙店购买,则他应付款为:(30×10+40×5)×80%=400(元);
方案三:小明所要的30支钢笔和30本笔记本在甲店购买,10本笔记本在乙店购买,则他应付款为:30×10+(10×5)×80%=340(元),
综上,应选择方案三最为省钱.
【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.
11.(2018?武汉模拟)某电脑公司经销甲种型号电脑,每台售价4000元.为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.
(1)有几种进货方案?
(2)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少? 若考虑投入成本最低,则应选择哪种进货方案?
【答案】(1)共有5种进货方案;(2)购买甲种电脑6台,乙种电脑9台时对公司更有利(利润相同,成本最低).
【解析】(1)关系式为:4.8≤甲种电脑总价+乙种电脑总价≤5. (2)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;对公司更有利,因为甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,所以要多进乙.
解:(1)设购进甲种电脑x台,
48000≤3500x+3000(15?x)≤50000 解得6≤x≤10.
(2)设总获利为W元,
W=(4000?3500)x+(3800?3000?a)(15?x),
=(a?300)x+12000?15a.
当a=300时,(2)中所有方案获利相同.
此时,购买甲种电脑6台,乙种电脑9台时对公司更有利(利润相同,成本最低).
【点评】本题考查了一元一次不等式组的实际运用.
12.(2018?武汉二模)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2每辆60座客车租金共计1880元
(1) 求两种车租金每辆各多少元?
(2) 若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案
【答案】(1)42座客车租金320元/辆,60座客车租金460元/辆;(2)有2种方案,当m=5时,W取得最小值,最小值为2980
【解析】(1))设42座客车租金x元/辆,根据题中的等量关系列出方程组求解即可;(2)根据租用的辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.
解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,
根据题意,得:3x+2(x+140)=1880
解得:x=320
答:42座客车租金320元/辆,60座客车租金460元/辆.
(2)设租42座客车m辆,则60座客车(8- m)辆,
根据题意得:42m+60(8- m)≥385(, 320m+460 (8- m)≤3200(,
解得:3≤m≤5
∵m为整数,∴m的值可以是4、5,即有2种方案;
设总费用为W,则W=320m+460 (8- m)= -140m+ 3680,
∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,
(列举两种情况的费用,再比大小也可)
【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确的不等关系是解题关键.
同课章节目录