第2章《楞次定律和自感现象》章末测试题word版含答案

文档属性

名称 第2章《楞次定律和自感现象》章末测试题word版含答案
格式 zip
文件大小 149.8KB
资源类型 教案
版本资源 鲁科版
科目 物理
更新时间 2019-04-01 08:25:02

图片预览

内容文字预览

绝密★启用前
2019鲁科版高中物理选修3-2第2章《楞次定律和自感现象》章末测试题
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷
一、单选题(共20小题,每小题3.0分,共60分)


1.如图所示,质量为m的金属环用线悬挂起来.金属环有一半处于水平且与环面垂直的匀强磁场中.从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线拉力的大小的下列说法正确的是(  )

A. 大于环的重力mg,并逐渐减小
B. 始终等于环的重力mg
C. 小于环的重力mg,并保持恒定
D. 大于环的重力mg,并保持恒定
【答案】A
【解析】在磁场均匀减小的过程中,金属环由于受安培力作用要阻碍磁通量的减小,所以有向下运动的趋势,即线拉力大于环的重力.由于感应电流不变,而磁场逐渐减小,所以拉力逐渐减小,答案为A.
2.图中两个电路是研究自感现象的电路,对实验结果的描述正确的是(  )


①接通开关时,灯P2立即就亮,P1稍晚一会儿亮;
②接通开关时,灯P1立即就亮,P2稍晚一会儿亮;
③断开开关时,灯P1立即熄灭,P2稍晚一会儿熄灭;
④断开开关时,灯P2立即熄灭,P1稍晚一会儿熄灭.
A. ①③
B. ①④
C. ②③
D. ②④
【答案】A
【解析】甲图中,接通开关时,由于线圈阻碍电流的增加,故灯P1稍晚一会儿亮;断开开关时,虽然线圈中产生自感电动势,但由于没有闭合回路,灯P1立即熄灭.乙图中,线圈和灯P2并联,接通开关时,由于线圈阻碍电流的增加,故灯P2可以立即就亮,但电流稳定后,灯P2会被短路而熄灭;断开开关时,线圈中产生自感电动势,通过灯P2构成闭合回路放电,故灯P2稍晚一会儿熄灭.故①③正确、②④错误,选A.
3.如图所示,用一根长为L、质量不计的细杆与一个上弧长为l0、下弧长为d0的金属线框的中点联结并悬挂于O点,悬点正下方存在一个上弧长为2l0、下弧长为2d0的方向垂直纸面向里的匀强磁场,且d0?L.先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦力,下列说法正确的是(  )

A. 金属线框进入磁场时感应电流的方向为a→b→c→d→a
B. 金属线框离开磁场时感应电流的方向为a→d→c→b→a
C. 金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等
D. 向左摆动进入或离开磁场的过程中,所受安培力方向向右;向右摆动进入或离开磁场的过程中,所受安培力方向向左
【答案】D
【解析】当线框进入磁场时,dc边切割磁感线,由楞次定律可判断,感应电流的方向为:a→d→c→b→a;当线框离开磁场时,同理可判断其感应电流的方向为:a→b→c→d→a,故A、B错;线框dc边(或ab边)进入磁场或离开磁场时,都要切割磁感线产生感应电流,机械能转化为电能,故dc边进入磁场与ab边离开磁场的速度大小不相等,C错;由“来拒去留”知,D对.
4.关于线圈的自感系数大小的下列说法中正确的是(  )
A. 通过线圈的电流越大,自感系数越大
B. 线圈中的电流变化越快,自感系数越大
C. 插有铁芯时线圈的自感系数会比它没有插入铁芯时大
D. 线圈的自感系数与电流的大小,电流变化的快慢,是否有铁芯等都无关
【答案】C
【解析】自感系数由线圈自身决定,与其它因素无关.线圈越长、单位长度上匝数越多自感系数越大,有铁芯比没有铁芯大得多,C正确.
5.如图所示,间距为L、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m、电阻也为R的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B的匀强磁场中.现使金属棒以初速度v沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q.下列说法正确的是(  )

A. 金属棒在导轨上做匀减速运动
B. 整个过程中金属棒在导轨上发生的位移为
C. 整个过程中金属棒克服安培力做功为mv2
D. 整个过程中电阻R上产生的焦耳热为mv2
【答案】C
【解析】因为金属棒向右运动时受到向左的安培力作用,且安培力随速度的减小而减小,所以金属棒向左做加速度减小的减速运动;根据E==,q=IΔt=Δt=,解得x=;
整个过程中金属棒克服安培力做功等于金属棒动能的减少量mv2;整个过程中电路中产生的热量等于机械能的减少量mv2,电阻R上产生的焦耳热为mv2.
6.如图所示电路,L是自感系数较大的线圈,在滑动变阻器的滑动片P从A端迅速滑向B端的过程中,经过AB中点C时通过线圈的电流为I1;P从B端迅速滑向A端的过程中,经过C点时通过线圈的电流为I2;P固定在C点不动,达到稳定时通过线圈的电流为I0,则(  )

A.I1=I2=I0
B.I1>I0>I2
C.I1=I2>I0
D.I1<I0<I2
【答案】D
【解析】当滑动片从A端迅速滑向B端时,总电阻减小,总电流增大,L产生自感电动势阻碍增大,故I1比P稳定在C点的电流I0小;当P从B端迅速滑向A端时总电流减小,L自感电动势阻碍其减小,自感电流方向与原电流方向相同,故I2大于P稳定在C点时的电流I0,故D正确.
7.下列说法正确的是(  )
A. 感应圈的工作原理是电磁感应现象
B. 日光灯和白炽灯一样,都可接在直流电路中正常工作
C. 感应圈中的两个线圈的匝数一样多
D. 一个标有“220 V,40 W”的日光灯管,用欧姆表测灯管两端,读数约为1 210 Ω
【答案】A
【解析】
8.如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则(  )

A.=1
B.=2
C.=4
D.=
【答案】B
【解析】设小环的电阻为R,则大环的电阻为2R,小环的面积为S,则大环的面积为4S,且=k,当大环放入一均匀变化的磁场中时,大环相当于电源,小环相当于外电路,所以E1=4kS,U1=R=kS;当小环放入磁场中时,同理可得U2=2R=kS,故=2.选项B正确.
9.光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程为y=x2,其下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示),一个质量为m的小金属块从抛物线y=b(b>a)处以速度v沿抛物线下滑,假设抛物线足够长,则金属块在曲面上滑动的过程中产生的焦耳热总量是(  )

A.mgb
B.mv2
C.mg(b-a)
D.mg(b-a)+mv2
【答案】D
【解析】金属块在进入磁场或离开磁场的过程中,穿过金属块的磁通量发生变化,产生电流,进而产生焦耳热,最后,金属块在高为a的曲面上做往复运动,减少的机械能为mg(b-a)+mv2,由能量转化和守恒定律可知,减少的机械能全部转化成焦耳热,即D选项正确.
10.如图所示为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称.在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧运动(O是线圈中心),则磁铁从O到Y运动过程,经过电流表的电流方向为(  )

A. 由E经电流表流向F
B. 由F经电流表流向E
C. 先由E经电流表流向F,再由F经电流表流向E
D. 先由F经电流表流向E,再由E经电流表流向F
【答案】A
【解析】磁极绕转轴从O到Y匀速转动,穿过线圈平面的磁通量向上并减小,根据楞次定律可知线圈中产生逆时针方向的感应电流,电流由E经G流向F,故A正确.
11.关于线圈中自感电动势的大小的说法中正确的是(  )
A. 自感系数一定时,电流变化越大,自感电动势越大
B. 自感系数一定时,电流变化越快,自感电动势越大
C. 通过线圈的电流为零的瞬间,自感电动势为零
D. 通过线圈的电流为最大值的瞬间,自感电动势最大
【答案】B
【解析】自感电动势由自感系数L和电流变化快慢共同决定,E=L,自感系数跟线圈匝数、尺寸及是否有铁芯有关.电流变化越快,自感系数越大,产生的自感电动势越大.所以A、C、D错误,B正确.
12.飞机在一定高度水平飞行时,由于地磁场的存在,其机翼就会切割磁感线,两机翼的两端点之间会有一定的电势差。若飞机在北半球水平飞行,且地磁场的竖直分量方向竖直向下,则从飞行员的角度看(  )
A. 机翼左端的电势比右端的电势低
B. 机翼左端的电势比右端的电势高
C. 机翼左端的电势与右端的电势相等
D. 以上情况都有可能
【答案】B
【解析】当飞机在北半球水平飞行时,由于地磁场的存在,且地磁场的竖直分量方向竖直向下,则由右手定则可判定机翼左端的电势比右端的电势高.若构成闭合电路则电流方向由机翼的右端流向左端,而机翼切割磁感线相当于电源,所以电源内部电流由负极流向正极.故选B.
13.如图所示,两条平行虚线之间存在匀强磁场,虚线间的距离为L,磁场方向垂直纸面向里,abcd是位于纸面内的梯形线圈,ad与bc间的距离也为L,t=0时刻bc边与磁场区域边界重合.现令线圈以恒定的速度v沿垂直于磁场区域边界的方向穿过磁场区域,取沿a—b—c—d—a方向为感应电流正方向,则在线圈穿越磁场区域的过程中,感应电流I随时间t变化的图线可能是(  )




A.
B.



C.
D.
【答案】B
【解析】由于bc进入磁场时,根据右手定则判断出其感应电流的方向是沿adcba的方向,其方向为负方向,所以A、C错误;当逐渐向右移动时,切割磁感线的条数在增加,故感应电流在增大;当bc边穿出磁场区域时,线圈中的感应电流方向变为abcda,是正方向,故其图象在时间轴的上方,所以B正确,D错误.
14.如图所示,两根相距为l的平行直导轨ab、cd,b、d间连有一固定电阻R,导轨电阻可忽略不计.MN为放在ab和cd上的一导体杆,与ab垂直,其电阻也为R.整个装置处于匀强磁场中,磁感应强度的大小为B,磁场方向垂直于导轨所在平面(垂直纸面向里).现对MN施力使它沿导轨方向以速度v水平向右做匀速运动.令U表示MN两端电压的大小,则(  )

A.v=Blv,流过固定电阻R的感应电流由b经R到d
B.v=Blv,流过固定电阻R的感应电流由d经R到b
C.MN受到的安培力大小FA=,方向水平向右
D.MN受到的安培力大小FA=,方向水平向左
【答案】A
【解析】导体MN做切割磁感线运动,产生感应电动势,相当于一个内阻为R的电源,电路中电源电动势为E=BLv,U表示路端电压,根据闭合回路欧姆定律可得:U=E=BLv,根据右手定则可得流过电阻的电流方向由b到d,A正确,B错误;根据公式F=BIL可得MN受到的安培力大小F=BIL=,方向向左,C、D错误.
15.如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是(  )

A. 三者同时落地
B. 甲、乙同时落地,丙后落地
C. 甲、丙同时落地,乙后落地
D. 乙、丙同时落地,甲后落地
【答案】D
【解析】闭合导体线框下落过程中,磁通量变化会产生感应电流,根据“来拒去留”可知甲下落过程加速度小于g;而乙、丙图中没有闭合回路因此,下落加速度相同,都是g,所以同时下落,D正确.
16.半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图所示.在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒,则以下说法正确的是(  )


A. 第2秒内上极板为正极
B. 第3秒内上极板为负极
C. 第2秒末微粒回到了原来位置
D. 第3秒末两极板之间的电场强度大小为
【答案】A
【解析】第2 s内磁场强度减小,所以圆环产生感应电动势,相当于一电源,由楞次定律知,金属板上端为正极,所以A正确.第3 s内磁场方向向外,强度增加,产生的感应电动势仍然是上极板为正,所以B错误.第1 s内,上极板为负,第2 s内,上极板为正,这个过程中电场强度相反,所以微粒先加速,然后减速,当第2秒末微粒速度为零,离开中心位置最大,所以C错误.第3 s末圆环产生的感应电动势为=0.1 πr2,电场强度E==,所以D错误.
17.如图所示,AOC是光滑的金属轨道,AO沿竖直方向,OC沿水平方向,PQ是一根金属直杆立在轨道上,直杆从图示位置由静止开始在重力作用下运动,运动过程中Q端始终在OC上,空间存在着垂直纸面向外的匀强磁场,则在PQ杆滑动的过程中,下列判断正确的是(  )

A. 感应电流的方向始终是P→Q
B. 感应电流的方向先是由P→Q,后是由Q→P
C.PQ受磁场力的方向垂直于杆向左
D.PQ受磁场力的方向先垂直于杆向右,后垂直于杆向左
【答案】B
【解析】在PQ杆滑动的过程中,杆与轨道所围成的三角形面积先增大后减小,三角形POQ内的磁通量先增大后减小,由楞次定律可判断B项对,A项错.再由PQ中电流方向及左手定则可判断C、D项错误,故选B.
18.如图所示,在半径为R的半圆形区域内,有磁感应强度为B的垂直纸面向里的有界匀强磁场,PQM为圆内接三角形,且PM为圆的直径,三角形的各边由材料相同的细软弹性导线组成(不考虑导线中电流间的相互作用).设线圈的总电阻为r且不随形状改变,此时∠PMQ=37°,下列说法正确的是(  )

A. 穿过线圈PQM中的磁通量大小为Φ=0.96BR2
B. 若磁场方向不变,只改变磁感应强度B的大小,且B=B0+kt,则此时线圈中产生的感应电流大小为I=
C. 保持P、M两点位置不变,将Q点沿圆弧顺时针移动到接近M点的过程中,线圈中有感应电流且电流方向不变
D. 保持P、M两点位置不变,将Q点沿圆弧顺时针移动到接近M点的过程中,线圈中不会产生焦耳热
【答案】A
【解析】由计算可知A正确,B错误.Q点顺时针移动到当∠PMQ=45°线圈中感应电流方向改变,C错误.线圈中会产生焦耳热, D错误.
19.如图所示,一个闭合回路由两部分组成.右侧是电阻为r的圆形线圈,置于竖直向上均匀变化的磁场B1中,左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计.磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒ab此时恰好能静止在导轨上,下述判断不正确的是(  )

A. 圆形线圈中的磁场方向向上且均匀增强
B. 导体棒ab受到的安培力大小为mgsinθ
C. 回路中的感应电流为
D. 圆形线圈中的电热功率为(r+R)
【答案】D
【解析】导体棒此时恰好能静止在导轨上,根据左手定则,感应电流的方向b→a,感应电流的磁场方向向下,则右侧圆形线圈中的磁场应均匀增加,A正确;由导体棒平衡有:F安=mgsinθ,B正确;根据安培力公式F=B2dI=mgsinθ,所以I=,C正确;圆形线圈中的电热功率P=r,D错误.
20.如图所示,矩形闭合金属框abcd的平面与匀强磁场垂直,若ab边受竖直向上的磁场力的作用,则可知线框的运动情况是(  )

A. 向左平动进入磁场
B. 向右平动退出磁场
C. 沿竖直方向向上平动
D. 沿竖直方向向下平动
【答案】A
【解析】由于ab边受竖直向上的磁场力的作用,根据左手定则可判断金属框中电流方向为abcd,根据楞次定律可判断穿过金属框的磁通量在增加选项A正确.


第Ⅱ卷
二、计算题(共4小题,每小题10.0分,共40分)


21.有人设计了一种可测速的跑步机,测速原理如图所示,该机底面固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R,绝缘橡胶带上镀有间距为d的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为U,求:

(1)橡胶带匀速运动的速率;
(2)一根金属条每次经过磁场区域克服安培力做的功.
【答案】(1)v= (2)W=
【解析】(1)设电动势为E,橡胶带运动速率为v
由:E=BLv,E=U得:v=
(2)设电流强度为I,安培力为F,克服安培力做的功为W
由:I=,F=BIL,W=Fd,
得:W=.
22.如图所示,平行金属导轨与水平面间夹角均为θ= 37°,导轨间距为1 m ,电阻不计,导轨足够长.两根金属棒ab和a′b′的质量都是0.2 kg,电阻都是1 Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5 ,金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为 18 W .求 :

(1)ab达到的最大速度多大?
(2)ab下落了30 m 高度时,其下滑速度已经达到稳定,则此过程中回路电流的发热量Q多大?
(3)在ab下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度有何要求? (g=10 m/s2,sin 37°=0.6,cos 37°=0.8)
【答案】(1)15 m/s (2)37.5 J (3)10 m/s≤v≤15 m/s
【解析】(1)达到稳定时由能量守恒:P电=mgvsin 37°
解得:v=15 m/s
(2)由能量守恒关系得mgh=mv2+Q
代入数据得Q=37.5 J
(3)由电功率定义可知:P=I2·2R
解得:I=3 A
又E=BLv
达到稳定时,对ab棒由平衡条件:mgsin 37°=BIL
解得:B=0.4 T
对a′b′棒:垂直轨道方向:FN=mgcos 37°+BIL
由滑动摩擦定律:Ff=μFN
由平衡条件:Ff≥mgsin 37°
代入已知条件,解得:v≥10 m/s
则a′b′固定解除时ab棒的速度: 10 m/s≤v≤15 m/s.
23.如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属细棒ab从图示位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域Ⅰ内的导轨上由静止释放.在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g.求:


(1)ab棒的质量;
(2)ab棒开始下滑的位置离区域Ⅱ上边界的距离;
(3)若ab棒开始下滑至EF的过程中cd棒产生的热量为Q,求ab棒的电阻.
【答案】(1)m (2)l (3)-R
【解析】(1)cd棒始终静止不动,说明ab棒进入磁场后做匀速直线运动,ab、cd组成串联回路二者电流大小相同,故ab棒的质量与cd相等,mab=m
(2)ab棒在到达区域Ⅱ前做匀加速直线运动,a==gsinθ,
cd棒始终静止不动,ab棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab棒在区域Ⅱ中一定做匀速直线运动,
可得:=Blv1,
=Blgsinθtx,所以tx=
ab棒在区域Ⅱ中做匀速直线运动的速度v1=,
则ab棒开始下滑的位置与区域Ⅱ上边界的距离h=at=l.
(3)ab棒在区域Ⅱ中运动的时间t2==,
ab棒从开始下滑至EF的总时间t=tx+t2=2
E=Blv1=Bl,
ab棒从开始下滑至EF的过程中闭合回路中产生的总热量:Q总=EIt=4mglsinθ,
ab、cd串联,cd棒产生的热量Q=Q总
求得Rab=-R.
24.在光滑水平面上,有一个粗细均匀的单匝正方形线圈abcd,现在外力的作用下从静止开始向右运动,穿过固定不动的有界匀强磁场区域,磁场的磁感应强度为B,磁场区域的宽度大于线圈边长.测得线圈中产生的感应电动势E的大小和运动时间变化关系如图.已知图象中三段时间分别为Δt1、Δt2、Δt3,且在Δt2时间内外力为恒力.

(1)定性说明线圈在磁场中向右作何种运动?
(2)若线圈bc边刚进入磁场时测得线圈速度v,bc两点间电压U,求Δt1时间内,线圈中的平均感应电动势.
(3)若已知Δt1∶Δt2∶Δt3=2∶2∶1,则线框边长与磁场宽度比值为多少?
(4)若仅给线圈一个初速度v0使线圈自由向右滑入磁场,试画出线圈自bc边进入磁场开始,其后可能出现的v-t图象.(只需要定性表现出速度的变化,除了初速度v0外,不需要标出关键点的坐标)
【答案】(1)匀加速直线运动 (2)E= (3)7:18
(4)

【解析】(1)因为电动势大小随时间均匀增大,根据E=BLv得速度v随时间均匀增大,线框作匀加速直线运动.
(2)bc间电压U,则感应电动势E=
设线框边长l,则=Blv①
Δt1时间内,平均感应电动势E==②
联立得E=
(3)设线框加速度a,bc边进入磁场时速度v,Δt1=Δt2=2Δt3=2Δt,线框边长l,磁场宽L
根据三段时间内线框位移,得
v·2Δt+a(2Δt)2=l
v·4Δt+a(4Δt)2=L
v·5Δt+a(5Δt)2=l+L
解得l∶L=7∶18.
(4)