【易错专练】中考数学二轮复习 专题7 统计和概率(学生版+教师版)

文档属性

名称 【易错专练】中考数学二轮复习 专题7 统计和概率(学生版+教师版)
格式 zip
文件大小 3.1MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2019-04-09 10:04:13

文档简介

易错专题7:统计初步和概率
一、平均数
1、平均数的概念
(1)平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”。
(2)加权平均数:如果n个数中,出现次,出现次,…,出现次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中叫做权。
2、平均数的计算方法
(1)定义法
当所给数据比较分散时,一般选用定义公式:
(2)加权平均数法:
当所给数据重复出现时,一般选用加权平均数公式:,其中。
(3)新数据法:
当所给数据都在某一常数a的上下波动时,一般选用简化公式:。
其中,常数a通常取接近这组数据平均数的较“整”的数,,,…,。是新数据的平均数(通常把叫做原数据,叫做新数据)。
二、统计学中的几个基本概念
1、总体
所有考察对象的全体叫做总体。
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
三、众数、中位数
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差
1、方差的概念
在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即

2、方差的计算
(1)基本公式:
(2)简化计算公式(Ⅰ):
也可写成
此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据,,…,,那么,
此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据的方差与新数据,,…,的方差相等,也就是说,根据方差的基本公式,求得的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s”表示,即
五、频率分布
1、频率分布的意义
在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念
(1)研究样本的频率分布的一般步骤是:
①计算极差(最大值与最小值的差)
②决定组距与组数
③决定分点
④列频率分布表
⑤画频率分布直方图
(2)频率分布的有关概念
①极差:最大值与最小值的差
②频数:落在各个小组内的数据的个数
③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
六、确定事件和随机事件
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
七、随机事件发生的可能性
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
八、概率的意义与表示方法
1、概率的意义
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P
九、确定事件和随机事件的概率之间的关系
1、确定事件概率
(1)当A是必然发生的事件时,P(A)=1
(2)当A是不可能发生的事件时,P(A)=0
2、确定事件和随机事件的概率之间的关系
事件发生的可能性越来越小
0 1概率的值
不可能发生 必然发生
事件发生的可能性越来越大
十、古典概型
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
十一、列表法求概率
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
十二、树状图法求概率
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
十三、利用频率估计概率
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
一、选择题
例1:(2018山东省滨州市)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
A.4 B.3 C.2 D.1
【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
【解答】解:根据题意,得:=2x,
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选:A.
【易错知识点提示】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
例2.(2018甘肃省)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:




平均数(环)
11.1
11.1
10.9
10.9
方差s2
1.1
1.2
1.3
1.4
若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择(  )
A.甲 B.乙 C.丙 D.丁
【分析】根据平均数和方差的意义解答.
【解答】解:从平均数看,成绩好的同学有甲、乙,
从方差看甲、乙两人中,甲方差小,即甲发挥稳定,
故选:A.
【易错知识点提示】本题考查了平均数和方差,熟悉它们的意义是解题的关键.
例3.(2018广东省)数据1、5、7、4、8的中位数是(  )
A.4 B.5 C.6 D.7
【分析】根据中位数的定义判断即可;
【解答】解:将数据重新排列为1、4、5、7、8,
则这组数据的中位数为5
故选:B.
【易错知识点提示】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
例4.(2018杭州市)某青年排球队12名队员的年龄情况如表:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这个队队员年龄的众数和中位数是(  )
A.19,20 B.19,19 C.19,20.5 D.20,19
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.
所以本题这组数据的中位数是20,众数是19.
故选:A.
【易错知识点提示】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
例5.(2018湖南省常德市)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适(  )
A.甲 B.乙 C.丙 D.丁
【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【解答】解:∵1.5<2.6<3.5<3.68,
∴甲的成绩最稳定,
∴派甲去参赛更好,
故选:A.
【易错知识点提示】此题主要考查了方差,关键是掌握方差越小,稳定性越大.
例6.(2018江苏省南通市)下列说法中,正确的是(  )
A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖
B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式
C.一组数据8,8,7,10,6,8,9的众数是8
D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小
【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.
【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;
B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;
C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;
D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;
故选:C.
【易错知识点提示】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.
例7.(2018荆门市)甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次
第二次
第三次
第四次
第五次
第六交

9
8
6
7
8
10

8
7
9
7
8
8
对他们的训练成绩作如下分析,其中说法正确的是(  )
A.他们训练成绩的平均数相同 B.他们训练成绩的中位数不同
C.他们训练成绩的众数不同 D.他们训练成绩的方差不同
【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.
【解答】解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,
∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,
方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),
∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,
∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,
方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),
则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,
故选:D.
【易错知识点提示】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.
例8.(2018山东省临沂市)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是(  )
A. B. C. D.
【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.
【解答】解:如图所示:

一共有9种可能,符合题意的有1种,
故小华和小强都抽到物理学科的概率是:.
故选:D.
【易错知识点提示】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.
例9.(2018南充市)下列说法正确的是(  )
A.调查某班学生的身高情况,适宜采用全面调查
B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件
C.天气预报说明天的降水概率为95%,意味着明天一定下雨
D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
【分析】利用概率的意义以及实际生活常识分析得出即可.
【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;
B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;
C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;
D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;
故选:A.
【易错知识点提示】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.
例10.(2018江苏省南京市)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高(  )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
【分析】分别计算出原数据和新数据的平均数和方差即可得.
【解答】解:原数据的平均数为=188,
则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,
新数据的平均数为=187,
则新数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(186﹣188)2+(194﹣188)2]=,
所以平均数变小,方差变小,
故选:A.
【易错知识点提示】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.
二.填空题
例1.(2018包头市)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是  .
【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.
【解答】解:列表如下:
﹣2
﹣1
1
2
﹣2
2
﹣2
﹣4
﹣1
2
﹣1
﹣2
1
﹣2
﹣1
2
2
﹣4
﹣2
2
由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,
∴积为大于﹣4小于2的概率为=,
故答案为:.
【易错知识点提示】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
例2.(2018东营市)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是  .
【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.
【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
故答案为:.
【易错知识点提示】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.
例3.(2018桂林市)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为  分.
【分析】根据加权平均数的定义列出方程求解即可.
【解答】解:(85×2+90×2+70)÷(2+2+1)
=(170+180+70)÷5
=420÷5
=84(分).
答:该学习小组的平均分为84分.
故答案为:84.
【易错知识点提示】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.
例4.(2018杭州市)从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是  .
【分析】在6个数中找出无理数,再根据概率公式即可求出抽到无理数的概率.
【解答】解:∵在﹣1、0、、π、5.1、7这6个数中无理数有、π这2个,
∴抽到无理数的概率是=,
故答案为:.
【易错知识点提示】本题考查了概率公式以及无理数,根据无理数的定义找出无理数的个数是解题的关键.
例5.(2018南宁市)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是  .
【分析】先根据众数的定义求出x=5,再根据中位数的定义求解可得.
【解答】解:∵数据6,x,3,3,5,1的众数是3和5,
∴x=5,
则数据为1、3、3、5、5、6,
∴这组数据为=4,
故答案为:4.
【易错知识点提示】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.
例6.(2018贵阳市)某班50名学生在2018年适应性考试中,数学成绩在100?110分这个分数段的频率为0.2,则该班在这个分数段的学生为  人.
【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.
【解答】解:∵频数=总数×频率,
∴可得此分数段的人数为:50×0.2=10.
故答案为:10.
【易错知识点提示】此题主要考查了频数与频率,利用频率求法得出是解题关键.
例7.(2018安顺市)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是__________.
选手


平均数(环)
方差
【解答】根据方差的定义,方差越小数据越稳定.
详解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,
所以本题中成绩比较稳定的是乙.
故答案为:乙.
【易错知识点提示】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
例8.(2018哈尔滨市)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是  .
【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.
【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,
故骰子向上的一面出现的点数是3的倍数的概率是:=.
故答案为:.
【易错知识点提示】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
三.解答题
例1.(2018广东省)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.
(1)被调查员工人数为  人:
(2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
【分析】(1)由“不剩”的人数及其所占百分比可得答案;
(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;
(3)用总人数乘以样本中“剩少量”人数所占百分比可得.
【解答】解:(1)被调查员工人数为400÷50%=800人,
故答案为:800;
(2)“剩少量”的人数为800﹣(400+80+20)=300人,
补全条形图如下:
(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.
【易错知识点提示】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.
例2.(2018临安市)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
【分析】(1)首先设袋中蓝球的个数为x个,由从中任意摸出一个是白球的概率为,利用概率公式即可得方程:=,解此方程即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都是摸到白球的情况,再利用概率公式求解即可求得答案
【解答】解:(1)设袋中蓝球的个数为x个,
∵从中任意摸出一个是白球的概率为,
∴=,
解得:x=1,
∴袋中蓝球的个数为1;
(2)画树状图得:
∵共有12种等可能的结果,两次都是摸到白球的有2种情况,
∴两次都是摸到白球的概率为:=.
【易错知识点提示】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
例3.(2018菏泽市)为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)
(1)依据折线统计图,得到下面的表格:
射击次序(次)
1
2
3
4
5
6
7
8
9
10
甲的成绩(环)
8
9
7
9
8
6
7
a
10
8
乙的成绩(环)
6
7
9
7
9
10
8
7
b
10
其中a=  ,b=  ;
(2)甲成绩的众数是  环,乙成绩的中位数是  环;
(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?
(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.
【分析】(1)根据折线统计图即可得;
(2)根据众数的定义可得;
(3)求出甲乙两人成绩的方差,方差小者成绩稳定;
(4)列表得出所有等可能结果,从中找到一男一女的结果数,利用概率公式计算可得.
【解答】解:(1)由折线统计图知a=8、b=7,
故答案为:8、7;
(2)甲射击成绩次数最多的是8环、乙射击成绩次数最多的是7环,
甲成绩的众数是8环、乙成绩的众数为7环;
(3)甲成绩的平均数为=8(环),
所以甲成绩的方差为×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2(环2),
乙成绩的平均数为=8(环),
所以乙成绩的方差为×[(6﹣8)2+4×(7﹣8)2+(8﹣8)2+2×(9﹣8)2+2×(10﹣8)2]=1.8(环2),
故甲成绩更稳定;
(4)用A、B表示男生,用a、b表示女生,列表得:

A
B
a
b
A

AB
Aa
Ab
B
BA

Ba
Bb
a
aA
aB

ab
b
bA
bB
ba

∵共有12种等可能的结果,其中一男一女的有8种情况,
∴恰好选到1男1女的概率为=.
【易错知识点提示】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.也考查了概率公式.
例4.(2018荆门市)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.
请根据图中信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;
(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.
【分析】(1)由A栏目人数及其所占百分比可得总人数;
(2)总人数乘以D栏目所占百分比求得其人数,再用总人数减去其他栏目人数求得B的人数即可补全图形,用360°乘以B人数所占比例可得;
(3)列表得出所有等可能结果,然后利用概率的计算公式即可求解
【解答】解:(1)30÷20%=150(人),
∴共调查了150名学生.
(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)
补全条形图如图所示.
扇形统计图中“B”所在扇形圆心角的度数为.
(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,
列表如下:
N1
N2
M1
M2
M3
M4
N1
(N1,N2)
(N1,M1)
(N1,M2)
(N1,M3)
(N1,M4)
N2
(N2,N1)
(N2,M1)
(N2,M2)
(N2,M3)
(N2,M4)
M1
(M1,N1)
(M1,N2)
(M1,M2)
(M1,M3)
(M1,M4)
M2
(M2,N1)
(M2,N2)
(M2,M1)
(M2,M3)
(M2,M4)
M3
(M3,N1)
(M3,N2)
(M3,M1)
(M3,M2)
(M3,M4)
M4
(M4,N1)
(M4,N2)
(M4,M1)
(M4,M2)
(M4,M3)
∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F)的有14种情况,
∴.
【易错知识点提示】本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
例5.(2018南充市)“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:
成绩/分
7
8
9
10
人数/人
2
5
4
4
(1)这组数据的众数是  ,中位数是  .
(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.
【分析】(1)根据众数和中位数的定义求解可得;
(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
【解答】解:(1)由于8分出现次数最多,
所以众数为8分,
中位数为第8个数,即中位数为9分,
故答案为:8分、9分;
(2)画树状图如下:
由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,
所以恰好抽到八年级两名领操员的概率为=.
【易错知识点提示】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
 例6.(2018内江市)为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别
成绩分组
频数
频率
1
47.5~59.5
2
0.05
2
59.5~71.5
4
0.10
3
71.5~83.5
a
0.2
4
83.5~95.5
10
0.25
5
95.5~107.5
b
c
6
107.5~120
6
0.15
合计
40
1.00
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=  ,b=  ,c=  ;
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为  ,72分及以上为及格,预计及格的人数约为  人,及格的百分比约为  ;
(3)补充完整频数分布直方图.
【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.
【分析】(1)根据第一组的频数和频率结合频率=,可求出总数,继而可分别得出a、b、c的值.
(2)根据频率=的关系可分别求出各空的答案.
(3)根据(1)中a、b的值即可补全图形.
【解答】解:(1)∵被调查的总人数为2÷0.05=40人,
∴a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,
故答案为:8、10、0.25;
(2)∵全区八年级学生总人数为200×40=8000人,
∴预计优秀的人数约为8000×0.15=1200人,预计及格的人数约为8000×(0.2+0.25+0.25+0.15)=6800人,及格的百分比约为×100%=85%,
故答案为:1200人、6800人、85%;
(3)补全频数分布直方图如下:
【易错知识点提示】本题主要考查频数分布直方图及频率分布表的知识,难度不大,解答本题的关键是掌握频率=.
例7.(2018青岛市)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.
请根据图中信息解决下列问题:
(1)共有 100 名同学参与问卷调查;
(2)补全条形统计图和扇形统计图;
(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
【分析】(1)由读书1本的人数及其所占百分比可得总人数;
(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;
(3)总人数乘以样本中读2本人数所占比例.
【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,
故答案为:100;
(2)读4本的女生人数为100×15%﹣10=5人,
读2本人数所占百分比为×100%=38%,
补全图形如下:
(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.
【易错知识点提示】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
例题8.(四川省泸州市)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求n的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;
(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;
(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.
【解答】解:(1)n=5÷10%=50;
(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),
1200×=240,
所以估计该校喜爱看电视的学生人数为240人;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
所以恰好抽到2名男生的概率==.
【易错知识点提示】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
 
选择题
1.(2018内江市)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指(  )
A.400
B.被抽取的400名考生
C.被抽取的400名考生的中考数学成绩
D.内江市2018年中考数学成绩
2.(2018四川省泸州市)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:
年龄
13
14
15
16
17
人数
1
2
2
3
1
则这些学生年龄的众数和中位数分别是(  )
A.16,15 B.16,14 C.15,15 D.14,15
3.(2018泰州市) 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是(  )
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
4.(2018威海市)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是(  )
A. B. C. D.
5.(2018武汉市)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是(  )
A.2、40 B.42、38 C.40、42 D.42、40
6.(2018湘潭市)每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校体重超标学生的人数为(  )
A.15 B.150 C.200 D.2000
7.(2018襄阳市)下列语句所描述的事件是随机事件的是(  )
A.任意画一个四边形,其内角和为180°
B.经过任意点画一条直线
C.任意画一个菱形,是屮心对称图形
D.过平面内任意三点画一个圆
8.(2018扬州市)下列说法正确的是(  )
A.一组数据2,2,3,4,这组数据的中位数是2
B.了解一批灯泡的使用寿命的情况,适合抽样调查
C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分
D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃
9. (2018宜昌市)为参加学校举办的“诗意校园?致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是(  )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
10.(2018淄博市)下列语句描述的事件中,是随机事件的为(  )
A.水能载舟,亦能覆舟 B.只手遮天,偷天换日
C.瓜熟蒂落,水到渠成 D.心想事成,万事如意
11.(2018新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级
参加人数
平均数
中位数
方差

55
135
149
191

55
135
151
110
某同学分析上表后得出如下结论:
(1)甲、乙两班学生的成绩平均成绩相同;
(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
(3)甲班成绩的波动比乙班大.
上述结论中,正确的是(  )
A.①② B.②③ C.①③ D.①②③
12.(2018深圳市)下列数据:75,80,85,85,85,则这组数据的众数和极差是(  )
A.85,10 B.85,5 C.80,85 D.80,10
13.(2018邵阳市)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐(  )
A.李飞或刘亮 B.李飞 C.刘亮 D.无法确定
填空题
1.(2018龙东地区)掷一枚质地均匀的骰子,向上一面的点数为5的概率是  .
2.(2018常熟市)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是  .
3.(2018杭州市)某射手在相同条件下进行射击训练,结果如下:
射击次数n
10
20
40
50
100
200
500
1000
击中靶心的频数m
9
19
37
45
89
181
449
901
击中靶心的频率
0.900
0.950
0.925
0.900
0.890
0.905
0.898
0.901
该射手击中靶心的概率的估计值是  (精确到0.01).
4.(2018抚顺市)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,  的成绩更稳定.
5.(2018娄底市)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为  .
6.(2018聊城市)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是  .
7.(2018深圳市)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:  .
8.(2018台州市)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是  .
9.(2018乌鲁木齐)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是  .
10.(2018重庆市)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是  个.
解答题
1.(2018泰州市)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.
根据以上信息,网答下列问题
(1)直接写出图中a,m的值;
(2)分别求网购与视频软件的人均利润;
(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.
2.(2018威海市)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量
3首
4首
4首
6首
7首
8首
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
3.(2018武汉市)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.
学生读书数量统计表
阅读量/本
学生人数
1
15
2
a
3
b
4
5
(1)直接写出m、a、b的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?
4.(2018湘潭市)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
5.(2018襄阳市)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.
频数分布统计表
组别
成绩x(分)
人数
百分比
A
60≤x<70
8
20%
B
70≤x<80
16
m%
C
80≤x<90
a
30%
D
90≤<x≤100
4
10%
请观察图表,解答下列问题:
(1)表中a=  ,m=  ;
(2)补全频数分布直方图;
(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为  .
6.(2018扬州市)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.
最喜爱的省运会项目的人数调查统计表
最喜爱的项目
人数
篮球
20
羽毛球
9
自行车
10
游泳
a
其他
b
合计
根据以上信息,请回答下列问题:
(1)这次调查的样本容量是  ,a+b  .
(2)扇形统计图中“自行车”对应的扇形的圆心角为   .
(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.
7.(2018枣庄市)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
8.(2018淄博市)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时)
6
7
8
9
10
人数
5
8
12
15
10
(1)写出这50名学生读书时间的众数、中位数、平均数;
(2)根据上述表格补全下面的条形统计图.
(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?
9.(2018深圳市)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
频数
频率
体育
40
0.4
科技
25
a
艺术
b
0.15
其它
20
0.2
请根据上图完成下面题目:
(1)总人数为  人,a=  ,b=  .
(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
10.(2018随州市)为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
(1)图中a的值为  ;
(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为  度;
(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有  人:
(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
易错专题7:统计初步和概率
一、平均数
1、平均数的概念
(1)平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”。
(2)加权平均数:如果n个数中,出现次,出现次,…,出现次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中叫做权。
2、平均数的计算方法
(1)定义法
当所给数据比较分散时,一般选用定义公式:
(2)加权平均数法:
当所给数据重复出现时,一般选用加权平均数公式:,其中。
(3)新数据法:
当所给数据都在某一常数a的上下波动时,一般选用简化公式:。
其中,常数a通常取接近这组数据平均数的较“整”的数,,,…,。是新数据的平均数(通常把叫做原数据,叫做新数据)。
二、统计学中的几个基本概念
1、总体
所有考察对象的全体叫做总体。
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
三、众数、中位数
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差
1、方差的概念
在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即

2、方差的计算
(1)基本公式:
(2)简化计算公式(Ⅰ):
也可写成
此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据,,…,,那么,
此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据的方差与新数据,,…,的方差相等,也就是说,根据方差的基本公式,求得的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s”表示,即
五、频率分布
1、频率分布的意义
在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念
(1)研究样本的频率分布的一般步骤是:
①计算极差(最大值与最小值的差)
②决定组距与组数
③决定分点
④列频率分布表
⑤画频率分布直方图
(2)频率分布的有关概念
①极差:最大值与最小值的差
②频数:落在各个小组内的数据的个数
③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
六、确定事件和随机事件
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
七、随机事件发生的可能性
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
八、概率的意义与表示方法
1、概率的意义
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P
九、确定事件和随机事件的概率之间的关系
1、确定事件概率
(1)当A是必然发生的事件时,P(A)=1
(2)当A是不可能发生的事件时,P(A)=0
2、确定事件和随机事件的概率之间的关系
事件发生的可能性越来越小
0 1概率的值
不可能发生 必然发生
事件发生的可能性越来越大
十、古典概型
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
十一、列表法求概率
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
十二、树状图法求概率
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
十三、利用频率估计概率
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
一、选择题
例1:(2018山东省滨州市)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
A.4 B.3 C.2 D.1
【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
【解答】解:根据题意,得:=2x,
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选:A.
【易错知识点提示】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
例2.(2018甘肃省)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:




平均数(环)
11.1
11.1
10.9
10.9
方差s2
1.1
1.2
1.3
1.4
若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择(  )
A.甲 B.乙 C.丙 D.丁
【分析】根据平均数和方差的意义解答.
【解答】解:从平均数看,成绩好的同学有甲、乙,
从方差看甲、乙两人中,甲方差小,即甲发挥稳定,
故选:A.
【易错知识点提示】本题考查了平均数和方差,熟悉它们的意义是解题的关键.
例3.(2018广东省)数据1、5、7、4、8的中位数是(  )
A.4 B.5 C.6 D.7
【分析】根据中位数的定义判断即可;
【解答】解:将数据重新排列为1、4、5、7、8,
则这组数据的中位数为5
故选:B.
【易错知识点提示】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
例4.(2018杭州市)某青年排球队12名队员的年龄情况如表:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这个队队员年龄的众数和中位数是(  )
A.19,20 B.19,19 C.19,20.5 D.20,19
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.
所以本题这组数据的中位数是20,众数是19.
故选:A.
【易错知识点提示】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
例5.(2018湖南省常德市)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适(  )
A.甲 B.乙 C.丙 D.丁
【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【解答】解:∵1.5<2.6<3.5<3.68,
∴甲的成绩最稳定,
∴派甲去参赛更好,
故选:A.
【易错知识点提示】此题主要考查了方差,关键是掌握方差越小,稳定性越大.
例6.(2018江苏省南通市)下列说法中,正确的是(  )
A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖
B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式
C.一组数据8,8,7,10,6,8,9的众数是8
D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小
【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.
【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;
B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;
C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;
D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;
故选:C.
【易错知识点提示】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.
例7.(2018荆门市)甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次
第二次
第三次
第四次
第五次
第六交

9
8
6
7
8
10

8
7
9
7
8
8
对他们的训练成绩作如下分析,其中说法正确的是(  )
A.他们训练成绩的平均数相同 B.他们训练成绩的中位数不同
C.他们训练成绩的众数不同 D.他们训练成绩的方差不同
【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.
【解答】解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,
∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,
方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),
∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,
∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,
方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),
则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,
故选:D.
【易错知识点提示】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.
例8.(2018山东省临沂市)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是(  )
A. B. C. D.
【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.
【解答】解:如图所示:

一共有9种可能,符合题意的有1种,
故小华和小强都抽到物理学科的概率是:.
故选:D.
【易错知识点提示】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.
例9.(2018南充市)下列说法正确的是(  )
A.调查某班学生的身高情况,适宜采用全面调查
B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件
C.天气预报说明天的降水概率为95%,意味着明天一定下雨
D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
【分析】利用概率的意义以及实际生活常识分析得出即可.
【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;
B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;
C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;
D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;
故选:A.
【易错知识点提示】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.
例10.(2018江苏省南京市)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高(  )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
【分析】分别计算出原数据和新数据的平均数和方差即可得.
【解答】解:原数据的平均数为=188,
则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,
新数据的平均数为=187,
则新数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(186﹣188)2+(194﹣188)2]=,
所以平均数变小,方差变小,
故选:A.
【易错知识点提示】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.
二.填空题
例1.(2018包头市)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是  .
【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.
【解答】解:列表如下:
﹣2
﹣1
1
2
﹣2
2
﹣2
﹣4
﹣1
2
﹣1
﹣2
1
﹣2
﹣1
2
2
﹣4
﹣2
2
由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,
∴积为大于﹣4小于2的概率为=,
故答案为:.
【易错知识点提示】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
例2.(2018东营市)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是  .
【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.
【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
故答案为:.
【易错知识点提示】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.
例3.(2018桂林市)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为  分.
【分析】根据加权平均数的定义列出方程求解即可.
【解答】解:(85×2+90×2+70)÷(2+2+1)
=(170+180+70)÷5
=420÷5
=84(分).
答:该学习小组的平均分为84分.
故答案为:84.
【易错知识点提示】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.
例4.(2018杭州市)从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是  .
【分析】在6个数中找出无理数,再根据概率公式即可求出抽到无理数的概率.
【解答】解:∵在﹣1、0、、π、5.1、7这6个数中无理数有、π这2个,
∴抽到无理数的概率是=,
故答案为:.
【易错知识点提示】本题考查了概率公式以及无理数,根据无理数的定义找出无理数的个数是解题的关键.
例5.(2018南宁市)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是  .
【分析】先根据众数的定义求出x=5,再根据中位数的定义求解可得.
【解答】解:∵数据6,x,3,3,5,1的众数是3和5,
∴x=5,
则数据为1、3、3、5、5、6,
∴这组数据为=4,
故答案为:4.
【易错知识点提示】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.
例6.(2018贵阳市)某班50名学生在2018年适应性考试中,数学成绩在100?110分这个分数段的频率为0.2,则该班在这个分数段的学生为 10 人.
【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.
【解答】解:∵频数=总数×频率,
∴可得此分数段的人数为:50×0.2=10.
故答案为:10.
【易错知识点提示】此题主要考查了频数与频率,利用频率求法得出是解题关键.
例7.(2018安顺市)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是__________.
选手


平均数(环)
方差
【解答】根据方差的定义,方差越小数据越稳定.
详解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,
所以本题中成绩比较稳定的是乙.
故答案为:乙.
【易错知识点提示】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
例8.(2018哈尔滨市)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是  .
【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.
【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,
故骰子向上的一面出现的点数是3的倍数的概率是:=.
故答案为:.
【易错知识点提示】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
三.解答题
例1.(2018广东省)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.
(1)被调查员工人数为 800 人:
(2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
【分析】(1)由“不剩”的人数及其所占百分比可得答案;
(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;
(3)用总人数乘以样本中“剩少量”人数所占百分比可得.
【解答】解:(1)被调查员工人数为400÷50%=800人,
故答案为:800;
(2)“剩少量”的人数为800﹣(400+80+20)=300人,
补全条形图如下:
(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.
【易错知识点提示】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.
例2.(2018临安市)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
【分析】(1)首先设袋中蓝球的个数为x个,由从中任意摸出一个是白球的概率为,利用概率公式即可得方程:=,解此方程即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都是摸到白球的情况,再利用概率公式求解即可求得答案
【解答】解:(1)设袋中蓝球的个数为x个,
∵从中任意摸出一个是白球的概率为,
∴=,
解得:x=1,
∴袋中蓝球的个数为1;
(2)画树状图得:
∵共有12种等可能的结果,两次都是摸到白球的有2种情况,
∴两次都是摸到白球的概率为:=.
【易错知识点提示】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
例3.(2018菏泽市)为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)
(1)依据折线统计图,得到下面的表格:
射击次序(次)
1
2
3
4
5
6
7
8
9
10
甲的成绩(环)
8
9
7
9
8
6
7
a
10
8
乙的成绩(环)
6
7
9
7
9
10
8
7
b
10
其中a= 8 ,b= 7 ;
(2)甲成绩的众数是 8 环,乙成绩的中位数是 7 环;
(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?
(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.
【分析】(1)根据折线统计图即可得;
(2)根据众数的定义可得;
(3)求出甲乙两人成绩的方差,方差小者成绩稳定;
(4)列表得出所有等可能结果,从中找到一男一女的结果数,利用概率公式计算可得.
【解答】解:(1)由折线统计图知a=8、b=7,
故答案为:8、7;
(2)甲射击成绩次数最多的是8环、乙射击成绩次数最多的是7环,
甲成绩的众数是8环、乙成绩的众数为7环;
(3)甲成绩的平均数为=8(环),
所以甲成绩的方差为×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2(环2),
乙成绩的平均数为=8(环),
所以乙成绩的方差为×[(6﹣8)2+4×(7﹣8)2+(8﹣8)2+2×(9﹣8)2+2×(10﹣8)2]=1.8(环2),
故甲成绩更稳定;
(4)用A、B表示男生,用a、b表示女生,列表得:

A
B
a
b
A

AB
Aa
Ab
B
BA

Ba
Bb
a
aA
aB

ab
b
bA
bB
ba

∵共有12种等可能的结果,其中一男一女的有8种情况,
∴恰好选到1男1女的概率为=.
【易错知识点提示】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.也考查了概率公式.
例4.(2018荆门市)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.
请根据图中信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;
(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.
【分析】(1)由A栏目人数及其所占百分比可得总人数;
(2)总人数乘以D栏目所占百分比求得其人数,再用总人数减去其他栏目人数求得B的人数即可补全图形,用360°乘以B人数所占比例可得;
(3)列表得出所有等可能结果,然后利用概率的计算公式即可求解
【解答】解:(1)30÷20%=150(人),
∴共调查了150名学生.
(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)
补全条形图如图所示.
扇形统计图中“B”所在扇形圆心角的度数为.
(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,
列表如下:
N1
N2
M1
M2
M3
M4
N1
(N1,N2)
(N1,M1)
(N1,M2)
(N1,M3)
(N1,M4)
N2
(N2,N1)
(N2,M1)
(N2,M2)
(N2,M3)
(N2,M4)
M1
(M1,N1)
(M1,N2)
(M1,M2)
(M1,M3)
(M1,M4)
M2
(M2,N1)
(M2,N2)
(M2,M1)
(M2,M3)
(M2,M4)
M3
(M3,N1)
(M3,N2)
(M3,M1)
(M3,M2)
(M3,M4)
M4
(M4,N1)
(M4,N2)
(M4,M1)
(M4,M2)
(M4,M3)
∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F)的有14种情况,
∴.
【易错知识点提示】本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
例5.(2018南充市)“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:
成绩/分
7
8
9
10
人数/人
2
5
4
4
(1)这组数据的众数是 8分 ,中位数是 9分 .
(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.
【分析】(1)根据众数和中位数的定义求解可得;
(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
【解答】解:(1)由于8分出现次数最多,
所以众数为8分,
中位数为第8个数,即中位数为9分,
故答案为:8分、9分;
(2)画树状图如下:
由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,
所以恰好抽到八年级两名领操员的概率为=.
【易错知识点提示】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
 例6.(2018内江市)为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别
成绩分组
频数
频率
1
47.5~59.5
2
0.05
2
59.5~71.5
4
0.10
3
71.5~83.5
a
0.2
4
83.5~95.5
10
0.25
5
95.5~107.5
b
c
6
107.5~120
6
0.15
合计
40
1.00
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= 8 ,b= 10 ,c= 0.25 ;
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 1200人 ,72分及以上为及格,预计及格的人数约为 6800人 ,及格的百分比约为 85% ;
(3)补充完整频数分布直方图.
【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.
【分析】(1)根据第一组的频数和频率结合频率=,可求出总数,继而可分别得出a、b、c的值.
(2)根据频率=的关系可分别求出各空的答案.
(3)根据(1)中a、b的值即可补全图形.
【解答】解:(1)∵被调查的总人数为2÷0.05=40人,
∴a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,
故答案为:8、10、0.25;
(2)∵全区八年级学生总人数为200×40=8000人,
∴预计优秀的人数约为8000×0.15=1200人,预计及格的人数约为8000×(0.2+0.25+0.25+0.15)=6800人,及格的百分比约为×100%=85%,
故答案为:1200人、6800人、85%;
(3)补全频数分布直方图如下:
【易错知识点提示】本题主要考查频数分布直方图及频率分布表的知识,难度不大,解答本题的关键是掌握频率=.
例7.(2018青岛市)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.
请根据图中信息解决下列问题:
(1)共有 100 名同学参与问卷调查;
(2)补全条形统计图和扇形统计图;
(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
【分析】(1)由读书1本的人数及其所占百分比可得总人数;
(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;
(3)总人数乘以样本中读2本人数所占比例.
【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,
故答案为:100;
(2)读4本的女生人数为100×15%﹣10=5人,
读2本人数所占百分比为×100%=38%,
补全图形如下:
(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.
【易错知识点提示】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
例题8.(四川省泸州市)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求n的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;
(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;
(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.
【解答】解:(1)n=5÷10%=50;
(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),
1200×=240,
所以估计该校喜爱看电视的学生人数为240人;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
所以恰好抽到2名男生的概率==.
【易错知识点提示】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
 
选择题
1.(2018内江市)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指(  )
A.400
B.被抽取的400名考生
C.被抽取的400名考生的中考数学成绩
D.内江市2018年中考数学成绩
【分析】直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而分析得出答案.
【解答】解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,
在这个问题中,样本是指被抽取的400名考生的中考数学成绩.
故选:C.
【易错知识点提示】此题主要考查了样本的定义,正确把握定义是解题关键.
2.(2018四川省泸州市)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:
年龄
13
14
15
16
17
人数
1
2
2
3
1
则这些学生年龄的众数和中位数分别是(  )
A.16,15 B.16,14 C.15,15 D.14,15
【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【解答】解:由表可知16岁出现次数最多,所以众数为16岁,
因为共有1+2+2+3+1=9个数据,
所以中位数为第5个数据,即中位数为15岁,
故选:A.
【易错知识点提示】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
3.(2018泰州市) 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是(  )
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
【分析】直接利用概率的意义分析得出答案.
【解答】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.
故选:C.
【易错知识点提示】此题主要考查了概率的意义,正确理解概率的意义是解题关键.
4.(2018威海市)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是(  )
A. B. C. D.
【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.
【解答】解:画树状图如下:
由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,
故选:B.
【易错知识点提示】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
5.(2018武汉市)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是(  )
A.2、40 B.42、38 C.40、42 D.42、40
【分析】根据众数和中位数的定义求解.
【解答】解:这组数据的众数和中位数分别42,38.
故选:B.
【易错知识点提示】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.
6.(2018湘潭市)每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校体重超标学生的人数为(  )
A.15 B.150 C.200 D.2000
【分析】用全校学生总人数乘以样本中体重超标的人数所占比例即可得.
【解答】解:估计全校体重超标学生的人数为2000×=150人,
故选:B.
【易错知识点提示】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
7.(2018襄阳市)下列语句所描述的事件是随机事件的是(  )
A.任意画一个四边形,其内角和为180°
B.经过任意点画一条直线
C.任意画一个菱形,是屮心对称图形
D.过平面内任意三点画一个圆
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【解答】解:A、任意画一个四边形,其内角和为180°是不可能事件;
B、经过任意点画一条直线是必然事件;
C、任意画一个菱形,是屮心对称图形是必然事件;
D、过平面内任意三点画一个圆是随机事件;
故选:D.
【易错知识点提示】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8.(2018扬州市)下列说法正确的是(  )
A.一组数据2,2,3,4,这组数据的中位数是2
B.了解一批灯泡的使用寿命的情况,适合抽样调查
C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分
D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃
【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.
【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;
B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;
C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;
D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;
故选:B.
【易错知识点提示】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.
9. (2018宜昌市)为参加学校举办的“诗意校园?致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是(  )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.
平均成绩一样,小明的方差小,成绩稳定,
故选:A.
【易错知识点提示】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
10.(2018淄博市)下列语句描述的事件中,是随机事件的为(  )
A.水能载舟,亦能覆舟 B.只手遮天,偷天换日
C.瓜熟蒂落,水到渠成 D.心想事成,万事如意
【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.
【解答】解:A、水能载舟,亦能覆舟,是必然事件,故此选项错误;
B、只手遮天,偷天换日,是不可能事件,故此选项错误;
C、瓜熟蒂落,水到渠成,是必然事件,故此选项错误;
D、心想事成,万事如意,是随机事件,故此选项正确.
故选:D.
【易错知识点提示】此题主要考查了随机事件,正确把握相关定义是解题关键.
11.(2018新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级
参加人数
平均数
中位数
方差

55
135
149
191

55
135
151
110
某同学分析上表后得出如下结论:
(1)甲、乙两班学生的成绩平均成绩相同;
(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
(3)甲班成绩的波动比乙班大.
上述结论中,正确的是(  )
A.①② B.②③ C.①③ D.①②③
【分析】两条平均数、中位数、方差的定义即可判断;
【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
根据方差可知,甲班成绩的波动比乙班大.
故(1)(2)(3)正确,
故选:D.
【易错知识点提示】本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
12.(2018深圳市)下列数据:75,80,85,85,85,则这组数据的众数和极差是(  )
A.85,10 B.85,5 C.80,85 D.80,10
【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.
【解答】解:众数为85,
极差:85﹣75=10,
故选:A.
【易错知识点提示】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.
13.(2018邵阳市)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐(  )
A.李飞或刘亮 B.李飞 C.刘亮 D.无法确定
【分析】根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.
【解答】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,
则李飞成绩的平均数为=8,
所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;
刘亮的成绩为7、8、8、9、7、8、8、9、7、9,
则刘亮成绩的平均数为=8,
∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,
∵0.6<1.8,
∴应推荐刘亮,
故选:C.
【易错知识点提示】本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.
填空题
1.(2018龙东地区)掷一枚质地均匀的骰子,向上一面的点数为5的概率是  .
【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.
【解答】解:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:,
故答案为:.
【易错知识点提示】此题主要考查了概率公式,关键是掌握概率的计算方法.
2.(2018常熟市)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是  .
【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.
【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,
∴圆中的黑色部分和白色部分面积相等,
∴在圆内随机取一点,则此点取黑色部分的概率是,
故答案为:.
【易错知识点提示】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.
3.(2018杭州市)某射手在相同条件下进行射击训练,结果如下:
射击次数n
10
20
40
50
100
200
500
1000
击中靶心的频数m
9
19
37
45
89
181
449
901
击中靶心的频率
0.900
0.950
0.925
0.900
0.890
0.905
0.898
0.901
该射手击中靶心的概率的估计值是  (精确到0.01).
【分析】根据表格中实验的频率,然后根据频率即可估计概率.
【解答】解:由击中靶心频率都在0.90上下波动,
所以该射手击中靶心的概率的估计值是0.90,
故答案为:0.90.
【易错知识点提示】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
4.(2018抚顺市)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中, 乙 的成绩更稳定.
【分析】根据方差的性质,可得答案.
【解答】解:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,
∵=,s甲2>s乙2,
则两名运动员中,乙的成绩更稳定,
故答案为:乙.
【易错知识点提示】本题考查了方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.(2018娄底市)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为  .
【分析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.
【解答】解:画树状图如下:
由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,
所以选修地理和生物的概率为,
故答案为:.
【易错知识点提示】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
6.(2018聊城市)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是  .
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,
∴P(红灯亮)==,
故答案为:.
【易错知识点提示】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
7.(2018深圳市)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:  .
【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.
【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,
故答案为:.
【易错知识点提示】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.
8.(2018台州市)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是  .
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.
【解答】解:根据题意,画树状图如下:
共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果,
所以两次摸出的小球标号相同的概率是=,
故答案为:.
【易错知识点提示】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
9.(2018乌鲁木齐)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是  .
【分析】直接利用概率公式求解即可求得答案.
【解答】解:∵袋子中共有5+2+1=8个球,其中红球有5个,
∴摸到红球的概率是,
故答案为:.
【易错知识点提示】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
10.(2018重庆市)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是  个.
【分析】根据平均数的计算解答即可.
【解答】解:,
故答案为:34
【易错知识点提示】此题考查折线统计图,关键是根据平均数的计算解答.
解答题
1.(2018泰州市)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.
根据以上信息,网答下列问题
(1)直接写出图中a,m的值;
(2)分别求网购与视频软件的人均利润;
(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.
【分析】(1)根据各类别百分比之和为1可得a的值,由游戏的利润及其所占百分比可得总利润;
(2)用网购与视频软件的利润除以其对应人数即可得;
(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据“调整后四个类别的利润相加=原总利润+60”列出方程,解之即可作出判断.
【解答】解:(1)a=100﹣(10+40+30)=20,
∵软件总利润为1200÷40%=3000,
∴m=3000﹣(1200+560+280)=960;
(2)网购软件的人均利润为=160元/人,
视频软件的人均利润=140元/人;
(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,
根据题意,得:1200+280+160x+140(10﹣x)=3000+60,
解得:x=9,
即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.
【易错知识点提示】本题考查条形统计图、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.
2.(2018威海市)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量
3首
4首
4首
6首
7首
8首
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
【分析】(1)根据统计图中的数据可以求得这组数据的中位数;
(2)根基表格中的数据可以解答本题;
(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.
【解答】解:(1)本次调查的学生有:20÷=120(名),
背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),
∵15+45=60,
∴这组数据的中位数是:(4+5)÷2=4.5(首),
故答案为:4.5首;
(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),
答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;
(3)活动启动之初的中位数是4.5首,众数是4首,
大赛比赛后一个月时的中位数是6首,众数是6首,
由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.
【易错知识点提示】本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
3.(2018武汉市)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.
学生读书数量统计表
阅读量/本
学生人数
1
15
2
a
3
b
4
5
(1)直接写出m、a、b的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?
【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;
(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.
【解答】解:(1)由题意可得,
m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,
即m的值是50,a的值是10,b的值是20;
(2)(1×15+2×10+3×20+4×5)×=1150(本),
答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.
【易错知识点提示】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
4.(2018湘潭市)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
【分析】(1)画树状图展示所有12种等可能的结果数;
(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.
【解答】解:(1)画树状图为:
共有12种等可能的结果数;
(2)画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,
所以他们两人恰好选修同一门课程的概率==.
【易错知识点提示】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
5.(2018襄阳市)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.
频数分布统计表
组别
成绩x(分)
人数
百分比
A
60≤x<70
8
20%
B
70≤x<80
16
m%
C
80≤x<90
a
30%
D
90≤<x≤100
4
10%
请观察图表,解答下列问题:
(1)表中a= 12 ,m= 40 ;
(2)补全频数分布直方图;
(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为  .
【分析】(1)先由A组人数及其百分比求得总人数,总人数乘以C的百分比可得a的值,用B组人数除以总人数可得m的值;
(2)根据(1)中所求结果可补全图形;
(3)列出所有等可能结果,再根据概率公式求解可得.
【解答】解:(1)∵被调查的总人数为8÷20%=40人,
∴a=40×30%=12,m%=×100%=40%,即m=40,
故答案为:12、40;
(2)补全图形如下:
(3)列表如下:

女1
女2
女3

﹣﹣﹣
(女,男)
(女,男)
(女,男)
女1
(男,女)
﹣﹣﹣
(女,女)
(女,女)
女2
(男,女)
(女,女)
﹣﹣﹣
(女,女)
女3
(男,女)
(女,女)
(女,女)
﹣﹣﹣
∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.
∴抽取的2名学生恰好是一名男生和一名女生的概率为=,
故答案为:.
【易错知识点提示】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.
6.(2018扬州市)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.
最喜爱的省运会项目的人数调查统计表
最喜爱的项目
人数
篮球
20
羽毛球
9
自行车
10
游泳
a
其他
b
合计
根据以上信息,请回答下列问题:
(1)这次调查的样本容量是 50 ,a+b 11 .
(2)扇形统计图中“自行车”对应的扇形的圆心角为 72° .
(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.
【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;
(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;
(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.
【解答】解:(1)样本容量是9÷18%=50,
a+b=50﹣20﹣9﹣10=11,
故答案为:50,11;
(2)“自行车”对应的扇形的圆心角=×360°=72°,
故答案为:72°;
(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).
【易错知识点提示】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
7.(2018枣庄市)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
【分析】(1)根据频率=频数÷总数可得答案;
(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;
(3)画树状图列出所有等可能结果,根据概率公式求解可得.
【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,
补全频数分布直方图如下:
(2)37800×(0.2+0.06+0.04)=11340,
答:估计日行走步数超过12000步(包含12000步)的教师有11340名;
(3)设16000≤x<20000的3名教师分别为A、B、C,
20000≤x<24000的2名教师分别为X、Y,
画树状图如下:
由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.
【易错知识点提示】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.
8.(2018淄博市)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时)
6
7
8
9
10
人数
5
8
12
15
10
(1)写出这50名学生读书时间的众数、中位数、平均数;
(2)根据上述表格补全下面的条形统计图.
(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?
【考点】X4:概率公式;VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.
【分析】(1)先根据表格提示的数据得出50名学生读书的时间,然后除以50即可求出平均数;在这组样本数据中,9出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,从而求出中位数是8.5;
(2)根据题意直接补全图形即可.
(3)从表格中得知在50名学生中,读书时间不少于9小时的有25人再除以50即可得出结论.
【解答】解:(1)观察表格,可知这组样本数据的平均数为:
(6×5+7×8+8×12+9×15+10×10)÷50=8.34,
故这组样本数据的平均数为2;
∵这组样本数据中,9出现了15次,出现的次数最多,
∴这组数据的众数是9;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,
∴这组数据的中位数为(8+9)=8.5;
(2)补全图形如图所示,
(3)∵读书时间是9小时的有15人,读书时间是10小时的有10,
∴读书时间不少于9小时的有15+10=25人,
∴被抽到学生的读书时间不少于9小时的概率是=
【易错知识点提示】本题考查了加权平均数、众数以及中位数,用样本估计总体的知识,解题的关键是牢记概念及公式.
9.(2018深圳市)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
频数
频率
体育
40
0.4
科技
25
a
艺术
b
0.15
其它
20
0.2
请根据上图完成下面题目:
(1)总人数为 100 人,a= 0.25 ,b= 15 .
(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
【分析】(1)根据“频率=频数÷总数”求解可得;
(2)根据频数分布表即可补全条形图;
(3)用总人数乘以样本中“艺术”类频率即可得.
【解答】解:(1)总人数为40÷0.4=100人,
a=25÷100=0.25、b=100×0.15=15,
故答案为:100、0.25、15;
(2)补全条形图如下:
(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.
【易错知识点提示】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.
10.(2018随州市)为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
(1)图中a的值为 6 ;
(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为 144 度;
(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有 100 人:
(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
【分析】(1)用总人数减去其他分组的人数即可求得60≤x<70的人数a;
(2)用360°乘以成绩在70≤x<80的人数所占比例可得;
(3)用总人数乘以样本中优秀人数所占比例即可得;
(4)先画出树状图展示所有12种等可能的结果数,再找出有C的结果数,然后根据概率公式求解.
【解答】解:(1)a=30﹣(2+12+8+2)=6,
故答案为:6;
(2)成绩x在“70≤x<80”所对应扇形的圆心角度数为360°×=144°,
故答案为:144;
(3)获得“优秀“的学生大约有300×=100人,
故答案为:100;
(4)50≤x<60的两名同学用A、B表示,90≤x<100的两名同学用C、D表示(小明用C表示),
画树状图为:
共有12种等可能的结果数,其中有C的结果数为6,
所以小明被选中的概率为=.
【易错知识点提示】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和频率分布直方图.
同课章节目录