2018-2019学年高中物理必修一学案第四章第3节+牛顿第二定律+Word版含答案

文档属性

名称 2018-2019学年高中物理必修一学案第四章第3节+牛顿第二定律+Word版含答案
格式 zip
文件大小 406.6KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2019-04-10 17:29:25

图片预览

文档简介

第3节牛顿第二定律
一、牛顿第二定律
1.内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
2.表达式:F=kma,式中F为物体所受的合力,k是比例系数。
二、力的单位
1.在国际单位制中,力的单位是牛顿,符号是N。
2.1 N的定义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=1 kg·m/s2。
3.表达式F=kma中的比例系数k的数值由F、m、a三物理量的单位共同决定,若三量都取国际单位制,则k=1,所以牛顿第二定律的表达式可写作F=ma。
1.自主思考——判一判
(1)加速度的方向决定了合外力的方向。(×)
(2)加速度的方向与合外力的方向相反。(×)
(3)物体的质量跟合外力成正比,跟加速度成反比。(×)
(4)加速度跟合外力成正比,跟物体的质量成反比。(√)
(5)物体加速度的大小跟它的质量和速度大小的乘积成反比。(×)
(6)物体加速度的大小跟它所受作用力中的任何一个力的大小成正比。(×)
2.合作探究——议一议
(1)静止在光滑水平面上的物体,受到一个水平拉力,在拉力刚开始作用的瞬间,物体是否立即获得加速度,是否立即有了速度?
提示:力是产生加速度的原因,力与加速度具有瞬时对应关系,故在力作用瞬间,物体立即获得了加速度;但由公式Δv=aΔt可知,要使物体获得速度,必须经过一段时间。
(2)物体的加速度增大是否速度就增大,合外力也增大?
提示:物体加速度增大,速度不一定增大,这取决于加速度与速度之间的方向关系。由F=ma可知,物体的合外力与加速度为瞬时对应关系,a增大则物体所受的合外力一定增大。
(3)若质量的单位用克,加速度的单位用厘米每二次方秒,那么力的单位是牛顿吗?牛顿第二定律表达式中的系数k还是1吗?
提示:不是。只有当质量的单位用千克,加速度的单位用米每二次方秒时,力的单位才是牛顿,此时牛顿第二定律表达式中的系数才是1。
对牛顿第二定律的理解
1.表达式F=ma中F指合外力,各量都要用国际单位。
2.对牛顿第二定律的理解
(1)瞬时性:a与F同时产生,同时变化,同时消失,为瞬时对应关系。
(2)矢量性:F=ma是矢量式,任一时刻a的方向均与合外力F的方向一致,当合外力方向变化时a的方向同时变化。
(3)同体性:公式F=ma中a、F、m都是针对同一物体。
(4)独立性:当物体同时受到几个力作用时,各个力都满足F=ma,每个力都会产生一个加速度,这些加速度的矢量和即为物体具有的合加速度,故牛顿第二定律可表示为
3.合外力、加速度、速度的关系
(1)力与加速度为因果关系,力是因,加速度是果。只要物体所受的合外力不为零,就会产生加速度。加速度与合外力方向总相同、大小与合外力成正比。
(2)力与速度无因果关系:合外力方向与速度方向可以同向,可以反向。合外力方向与速度方向同向时,物体做加速运动,反向时物体做减速运动。
(3)两个加速度公式的区别
a=是加速度的定义式,是比值定义法定义的物理量,a与v、Δv、Δt均无关;a=是加速度的决定式:加速度由物体受到的合外力和质量决定。
1.(多选)下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的是(  )
A.由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比
B.由m=可知,物体的质量与其所受的合力成正比,与其运动的加速度成反比
C.由a=可知,物体的加速度与其所受的合力成正比,与其质量成反比
D.由m=可知,物体的质量可以通过测量它的加速度和它所受的合力而求出
解析:选CD 牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可以求第三个量;物体的质量由物体本身决定,与受力无关;物体所受的合力,是由物体和与它相互作用的物体共同产生的,与物体的质量和加速度无关;由a=可知,物体的加速度与所受合外力成正比,与其质量成反比。综上分析知,选项A、B错误,C、D正确。
2.(多选)关于速度、加速度、合力的关系,下列说法正确的是(  )
A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度
B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同
C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的
D.合力变小,物体的速度一定变小
解析:选ABC 由牛顿第二定律可知选项A、B正确;初速度为0的匀加速直线运动中,v、a、F三者的方向相同,选项C正确;合力变小,加速度变小,但速度是变大还是变小取决于加速度与速度的方向关系,选项D错误。
3.(多选)在平直轨道上运动的车厢中的光滑水平桌面上用弹簧拴着一个小球,弹簧处于自然长度,如图所示,当旅客看到弹簧的长度变长时,对火车运动状态的判断可能的是(  )
A.火车向右运动,速度在增加中
B.火车向右运动,速度在减小中
C.火车向左运动,速度在增加中
D.火车向左运动,速度在减小中
解析:选BC 由于小球和火车一起运动,因此取小球为研究对象,由于弹簧变长了,故小球受到向左的弹力,即小球受到的合力向左。由F合=ma知,小球的加速度方向向左,如果速度v向右时,v减小,做减速运动,B正确;如果速度v向左时,v增大,做加速运动,C正确。
牛顿第二定律的简单应用
1.解题步骤
(1)确定研究对象。
(2)进行受力分析和运动情况分析,作出受力和运动的示意图。
(3)求合力F或加速度a。
(4)根据F=ma列方程求解。
2.解题方法
(1)矢量合成法:若物体只受两个力作用时,应用平行四边形定则求这两个力的合力,加速度的方向即是物体所受合外力的方向。
(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体的合外力。
①建立坐标系时,通常选取加速度的方向作为某一坐标轴的正方向(也就是不分解加速度),将物体所受的力正交分解后,列出方程Fx=ma,Fy=0。
②特殊情况下,若物体的受力都在两个互相垂直的方向上,也可将坐标轴建立在力的方向上,正交分解加速度a。根据牛顿第二定律列方程求解。
[典例] 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1 kg。(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)
(1)求车厢运动的加速度并说明车厢的运动情况;
(2)求悬线对球的拉力。
[思路点拨]
→→求合力→→
[解析] 方法一:合成法
(1)小球和车厢相对静止,它们的加速度相同。以小球为研究对象,对小球进行受力分析如图所示,小球所受合力F合=mgtan 37°,
由牛顿第二定律得小球的加速度为
a==gtan 37°=g=7.5 m/s2,
加速度方向水平向右。
车厢的加速度与小球相同,车厢做的是向右的匀加速运动或向左的匀减速运动。
(2)由图可知,悬线对球的拉力大小为
F==12.5 N。
方法二:正交分解法
(1)建立直角坐标系如图所示,
正交分解各力,根据牛顿第二定律列方程得x方向Fx=ma
y方向Fy-mg=0
即Fsin 37°=ma, Fcos 37°-mg=0
化简解得a=g=7.5 m/s2,加速度方向水平向右。
(2)F==12.5 N。
[答案] (1)7.5 m/s2,方向水平向右 车厢可能向右做匀加速直线运动或向左做匀减速直线运动
(2)12.5 N
(1)应用牛顿第二定律解题时,正确选取研究对象及受力分析至关重要,本题中分析车厢的运动要考虑它的双向性,加速度a一定与F合同向,但速度不一定与加速度同方向。
(2)合成法常用于两个互成角度的共点力的合成,正交分解法常用于三个或三个以上互成角度的共点力的合成。
1.一个质量为m的物体被竖直向上抛出,在空中运动过程所受的空气阻力大小为Ff,求该物体在上升和下降过程中的加速度。
解析:由牛顿第二定律知:物体上升过程的加速度:a1==g+,方向竖直向下。
物体下降过程的加速度:a2==g-,方向竖直向下。
答案:见解析
2.质量为m的木块,以一定的初速度沿倾角为θ的斜面向上滑动,斜面静止不动,木块与斜面间的动摩擦因数为μ,如图所示,求:
(1)木块向上滑动的加速度。
(2)若此木块滑到最大高度后,能沿斜面下滑,下滑时的加速度大小。
解析:(1)以木块为研究对象,在上滑时受力如图所示。根据题意,加速度方向沿斜面向下。将各力沿斜面和垂直斜面方向正交分解。
由牛顿第二定律有
mgsin θ+Ff=ma①
FN-mgcos θ=0②
且Ff=μFN③
由①②③式解得a=g(sin θ+μcos θ),方向沿斜面向下。
(2)当木块沿斜面下滑时,木块受到滑动摩擦力大小等于Ff,方向沿斜面向上。
由牛顿第二定律有mgsin θ-Ff=ma′④,
由②③④式解得a′=g(sin θ-μcos θ),方向沿斜面向下。
答案:见解析
牛顿第二定律的瞬时性问题
分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意两种基本模型的建立。
(1)刚性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即发生变化,不需要形变恢复时间,一般题目中所给细线或接触面在不加特殊说明时,均可按此模型处理。
(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在解决瞬时问题时,可将其弹力的大小看成不变来处理。
[典例] 如图所示,用手提一轻弹簧,弹簧下端挂一金属球。在将整个装置匀加速上提的过程中,手突然停止不动,则在此后一小段时间内(  )
A.小球立即停止运动
B.小球继续向上做减速运动
C.小球的速度与弹簧的形变量都要减小
D.小球的加速度减小
[解析] 以球为研究对象,小球只受到重力G和弹簧对它的拉力FT,由题可知小球向上做匀加速运动,即G[答案] D
由牛顿第二定律知:F与a具有瞬时对应关系,因此对瞬时加速度分析的关键是对物体受力分析,可采取“瞻前顾后”法,既要分析运动状态变化前的受力,又要分析运动状态变化瞬间的受力,从而确定加速度。常见力学模型有弹力可以发生突变的轻杆、轻绳和极短时间内弹力来不及变化的轻弹簧和橡皮条等。
1.如图所示,A、B两球用细线悬挂于天花板上且静止不动,两球质量mA=2mB,两球间是一个轻质弹簧,如果突然剪断悬线,则在剪断悬线瞬间(  )
A.A球加速度为g,B球加速度为g
B.A球加速度为g,B球加速度为0
C.A球加速度为g,B球加速度为0
D.A球加速度为g,B球加速度为g
解析:选B 在剪断悬线的瞬间弹簧的弹力保持不变,则B球的合力为零,加速度为零;对A球有(mA+mB)g=mAaA,得aA=g,故B选项正确。
2.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态。当木板AB突然向下撤离的瞬间,小球的加速度大小为(  )
A.0          B.g
C.g D.g
解析:选B 未撤离木板时,小球受重力G、弹簧的拉力F和木板的弹力FN的作用处于静止状态,通过受力分析可知,木板对小球的弹力大小为mg。在撤离木板的瞬间,弹簧的弹力大小和方向均没有发生变化,而小球的重力是恒力,故此时小球受到重力G、弹簧的拉力F,合力与木板提供的弹力大小相等,方向相反,故可知加速度的大小为g,由此可知B正确。