《比例的基本性质》教学设计
【教学目标】
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
【教学重点】理解比例的意义和基本性质。
【教学难点】应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
【教学准备】ppt课件
【教学过程】
一、牵引旧知,导入新课。
1、师生谈话。
同学们,今天,我给大家带来一位你们最熟悉的朋友,(PPT出示 6:4 ) 它叫什么?(板书比)你能把这个比的各部分名称说出来吗?
师:你能求出它的比值吗?
师:像这样比值是1.5的比你能再写一些吗?(把生汇报写出的比值是1.5的比,板书在黑板)你发现了什么?
师:同学们的发现很了不起,《中华人民共和国国旗法》规定:国旗的长和宽的比应是3:2,也就是说比值必须是1.5。制作大小不同的国旗时,应依比例放大或缩小,国旗的样式不得随意改变,这是有法律规定的。
2、创设情境,提出问题。
比和比例有什么区别?
师:6:4比值是1:5、12:8比值也是1.5,两个比之间可以用什么符号连接?这个式子还是比吗?叫什么?加一个字“例”(板书),一个字引起了什么变化?
二、探索比例的基本性质
1、介绍比例各部分名称
师:比例的各项都叫什么呢?大家翻开书41页上半部分,去认识一下他们。
生:两边两项“6和2”叫做比例的外项,中间两项“4和3”叫做比例的内项。
练习:(PPT)
请指出下列比例的两个外项和内项各是多少?
18:4=9:2 :4=3: =
猜数:(PPT)
老师这里有一个比例,4:□=□:6,内项看不清了。想一想:这两个内项可能是哪两个数?(A、正确吗?为什么?B、还有不同答案吗?C、你能举出项不是整数的例子吗?)这样的式子写得完吗?
猜想:
这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?
带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。
小组汇报初步形成共识:两个外项的积等于两个内项的积。(多找几个小组发表意见)
板书:两个外项的积是:6×4=24 6×4=24 6×4=24
???两个内项的积是:1 ×24=24 3×8=24 2.4×10=24 ……
5、验证:是不是所有的比例都有这个规律呢?有什么办法?你觉得应该怎样举例?①任意写一个简单的比;②求比值;③根据比例,写出另一个比的一项,求出另一项。
4:5=0.8 2:5=0.8 4:5=1.6:2 4×2=8
(1)前后四个同学另一个小组;
(2)每个同学写出一个比例,小组内交接验证;
(请小组长上台板演自己小组的4个比例,并说明外项和内项的积的情况)
(3)通过举例,你们能得出什么结论?(两个外项的积等于两个内项的积)
6、小结并板书课题
(1)老师这里也有一个比例:3:5=4:5,为什么两个外项的积不等于两个内项的积?
同学们的发现很有价值,与数学家不谋而合,他们也发现:在比例中,两个外项的积等于两个内项的积,并给它起了一个名字。完成板书:在比例里,两个外项的积等于两个内项的积,这叫比例的基本性质。(学生齐读)
7、完善
(1)如果用字母表示比例的四个项,即:a:b=c:d,那么比例的基本性质可以表示成什么?ad=bc,bc=ad。
(2)老师这里有一个比例,0:0=0:0,可以吗?
(3)比例的项不能为0。
如果把比例写成分数形式: = 这怎么相乘?(把等号两端的分子分母分别交叉相乘) = ad=bc
三、应用
1、试一试
学习了比例的基本性质,我想检验同学们一下,敢接受挑战吗?打开课本P44,“试一试”。独立完成,订正时问:这两种方法你最喜欢哪一种?
2、练一练。
(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)
谁能说出老师的秘诀?
(2)现在轮到我考你:6、4、18、12
(学生回答后让他说出判断理由)
(3)请你独立用4、5、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。
3、拓展训练。
(1)如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?
追问:为什么写得这么快?有什么窍门?
(2)在比例中,两个外项的积是18,其中一个内项是2,另一个内项是( )。
(3)成年人的头长与身长比是1:7,小华在画画时,画的头长为3厘米,要想保持比例,身长应画( )厘米。
四、分享收获,畅谈感想
这节课,你有什么收获?
五、作业布置
练习十第1、2、4题。
PAGE
1