第十章 热力学定律+阶段验收评估(四)+Word版含答案

文档属性

名称 第十章 热力学定律+阶段验收评估(四)+Word版含答案
格式 zip
文件大小 310.2KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2019-04-11 11:09:53

图片预览

文档简介

阶段验收评估(四) 热力学定律
(时间:50分钟 满分:100分)
一、选择题(本题共8小题,每小题6分,共48分,第1~5小题中只有一个选项符合题意,第6~8小题中有多个选项符合题意,全选对的得6分,选对但不全的得3分,有选错的得0分)
1.某校中学生参加电视台“异想天开”节目的活动,他们提出了下列四个设想方案,从理论上讲可行的是(  )
A.制作一个装置从海水中吸收内能全部用来做功
B.制作一种制冷设备,使温度降至绝对零度以下
C.汽车尾气中各类有害气体排入大气后严重污染了空气,想办法使它们自发地分离,既清洁了空气,又变废为宝
D.将房屋顶盖上太阳能板,可直接用太阳能来解决照明和热水问题
解析:选D 根据热力学第二定律知道,在不产生其他影响时,内能不能全部转化为机械能,因此从海水中吸收内能全部用来做功而不产生其他影响是不可能实现的,选项A错误;绝对零度是温度的极值,是不能达到的,选项B错误;有害气体和空气不可能自发地分离,选项C错误;利用太阳能最有前途的领域是通过太阳能电池将太阳能转化为电能再加以利用,选项D正确。
2.下列说法中正确的是(  )
A.物体吸热后温度一定升高
B.物体温度升高,内能一定增加
C.0 ℃的冰融化为0 ℃的水的过程中内能不变
D.100 ℃的水变为100 ℃的水汽的过程中内能增大
解析:选D 物体吸收热量温度不一定升高,A错误;物体温度升高,分子平均动能增大,若分子势能减小,物体的内能可能减小或不变,B错误;0 ℃的冰融化成0 ℃的水的过程中吸热,内能增加,C错误;100 ℃的水变成100 ℃的水汽过程中吸热,内能增大,D正确。
3.A、B两装置,均由一支一端封闭,一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。将两管抽成真空后,开口向下竖直插入水银槽中(插入过程没有空气进入管内),水银柱上升至如图所示位置停止,假设这一过程水银与外界没有热交换,则下列说法中正确的是(  )
A.A中水银的内能增量大于B中水银的内能增量
B.B中水银的内能增量大于A中水银的内能增量
C.A和B中水银体积保持不变,故内能增量相同
D.A和B中水银温度始终相同,故内能增量相同
解析:选B 外界大气压力对水银做功,使水银进入试管内,两装置将同样多的水银压入管中,故大气压力做功是相同的,这些功一部分增加了水银的重力势能,另一部分增加了水银的内能。由于A管中水银重心高,增加的重力势能大,故A管中水银内能的增量小。
4.如图所示, 一定质量的理想气体,从状态A经绝热过程A→B、等容过程B→C、等温过程C→A又回到了状态A,则(  )
A.A→B过程气体降温
B.B→C过程气体内能增加,可能外界对气体做了功
C.C→A过程气体吸热
D.全部过程气体做功为零
解析:选A A→B过程气体绝热膨胀,气体对外界做功,其对应的内能必定减小,即气体温度降低,A正确;B→C过程气体等容升压,由=恒量可知,气体温度升高,其对应的内能增加,因气体体积不变,做功W=0,B错误;C→A过程气体等温压缩,故内能变化为零,但外界对气体做功,因此该过程中气体放热,C错误;A→B过程气体对外做功,其数值等于AB线与横轴包围的面积,B→C过程气体不做功,C→A过程外界对气体做功,其数值等于CA线与横轴包围的面积,显然全过程外界对气体做的净功为ABC封闭曲线包围的面积,D错误。
5.下列说法中正确的是(  )
A.任何物体的内能就是组成该物体的所有分子热运动动能的总和
B.只要对内燃机不断改进,就可以把内燃机得到的全部内能转化为机械能
C.做功和热传递在改变内能的方式上是不同的
D.满足能量守恒定律的物理过程都能自发进行
解析:选C 内能的改变有两种方式:做功是不同形式的能间的转化,热传递是同种能间的转移,故C项正确。内能是物体内所有分子热运动动能和分子势能之和,故A项错。由热力学第二定律可知,热机的效率不可能达到100%,且一切与热现象有关的宏观过程都是有方向性的,故B、D均错。
6.关于一定量的气体,下列叙述正确的是(  )
A.气体吸收的热量可以完全转化为功
B.气体体积增大时,其内能一定减少
C.气体从外界吸收热量,其内能一定增加
D.外界对气体做功,气体内能可能减少
解析:选AD 如果气体等温膨胀,则气体的内能不变,吸收的热量全部用来对外做功,A正确;当气体体积增大时,对外做功,若同时吸收热量,且吸收的热量大于或等于对外做功的数值时,内能不会减少,所以B错误;若气体吸收热量同时对外做功,其内能也不一定增加,C错误;若外界对气体做功同时气体向外放出热量且放出的热量多于外界对气体所做的功,则气体内能减少,所以D正确。
7.下列关于熵的说法中正确的是(  )
A.熵是物体内分子运动无序程度的量度
B.在孤立系统中,一个自发的过程熵总是向减小的方向进行
C.热力学第二定律的微观实质是熵的增加,因此热力学第二定律又叫熵增加原理
D.熵值越大,代表系统内分子运动越无序
解析:选ACD 热力学第二定律表明,一切自然过程总是沿着分子热运动无序性增大的方向进行的。例如,功转变为热是机械能向内能转化。
8.(2016·海南高考)一定量的理想气体从状态M可以经历过程1或者过程2到达状态N,其p-V图像如图所示。在过程1中,气体始终与外界无热量交换;在过程2中,气体先经历等容变化再经历等压变化。对于这两个过程,下列说法正确的是(  )
A.气体经历过程1,其温度降低
B.气体经历过程1,其内能减小
C.气体在过程2中一直对外放热
D.气体在过程2中一直对外做功
E.气体经历过程1的内能改变量与经历过程2的相同
解析:选ABE 气体经历过程1,压强减小,体积变大,膨胀对外做功,内能减小,故温度降低,选项A、B正确。气体在过程2中,根据理想气体状态方程=C,则开始时,气体体积不变,压强减小,则温度降低,对外放热;然后压强不变,体积变大,膨胀对外做功,则温度升高,吸热,故选项C、D错误;无论是经过过程1还是过程2,初、末状态相同,故内能改变量相同,选项E正确。
二、计算题(本题共3小题,共52分)
9.(14分)图中A、B汽缸的长度和截面积分别为30 cm和20 cm2,C是可在汽缸内无摩擦滑动的、体积不计的活塞,D为阀门。整个装置均由导热材料制成。起初阀门关闭,A内有压强pA=2.0×105 Pa的氮气。B内有压强pB=1.0×105 Pa的氧气。阀门打开后,活塞C向右移动,最后达到平衡。
(1)求活塞C移动的距离及平衡后B中气体的压强;
(2)活塞C移动过程中A中气体是吸热还是放热?简要说明理由。(假定氧气和氮气均为理想气体,连接汽缸的管道体积可忽略)
解析:(1)由玻意耳定律:
对A部分气体有:pALS=p(L+x)S,
对B部分气体有:pBLS=p(L-x)S,
代入相关数据解得: x=10 cm,p=1.5×105 Pa。
(2)活塞C向右移动的过程中A中气体对外做功,而气体发生等温变化,内能不变,由热力学第一定律W+Q=ΔU知Q>0,故A中气体从外界吸热。
答案:(1)10 cm 1.5×105 Pa (2)吸热 理由见解析
10.(18分)风能是一种环保型能源。我国风能储量很大、分布面广,新疆维吾尔自治区拥有得天独厚的风能资源。新疆拥有达坂城、小草湖、塔城老风口、额尔齐斯河谷、罗布泊等九大风区,可开发利用的风区总面积为15万平方千米,可装机容量总计在8 000万千瓦以上。目前我国风力发电总装机容量已达2 640 MW。据勘测我国的风力资源至少有2.53×105 MW,所以风力发电是很有前途的一种能源。如图所示,风力发电是将风的动能转化为电能。
已知物体的动能与质量、速度的关系式为Ek=mv2。设空气的密度为ρ,水平风速为v,风力发电机每个叶片长为L,设通过叶片旋转所围成的圆面积内的所有风能转化为电能的效率为η。求:
(1)该风力发电机的发电功率P的数学表达式。
(2)若某地平均风速v=10 m/s,所有风力发电机的叶片长L=4 m,空气密度ρ=1.3 kg/m3,效率η=25%,每天平均发电20 h,则每天能获得多少电能?
解析:(1)叶片旋转所形成的圆面积为S=πL2,
t秒内流过该圆面积的风柱体的体积V=Svt=πL2vt,
风柱体的动能Ek=mv2=ρπL2v3t,
转化成的电能E=ηEk=ηρπL2v3t,
发出的电功率P==ηρπL2v3。
(2)将已知数据代入可求得每天获得的电能
E=Pt=×25%×1.3×3.14×42×103×20×3 600 J≈5.88×108 J。
答案:(1)P=ηρπL2v3 (2)5.88×108 J
11.(20分)如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。其中,A→B和C→D为等温过程,B→C和D→A为绝热过程(气体与外界无热量交换)。这就是著名的“卡诺循环”。
(1)该循环过程中,下列说法正确的是________。
A.A→B过程中,外界对气体做功
B.B→C过程中,气体分子的平均动能增大
C.C→D过程中,单位时间内碰撞单位面积器壁的分子数增多
D.D→A过程中,气体分子的速率分布曲线不发生变化
(2)该循环过程中,内能减小的过程是________(选填“A→B”“B→C”“C→D”或“D→A”)。若气体在A→B过程中吸收63 kJ的热量,在C→D过程中放出38 kJ的热量,则气体完成一次循环对外做的功为________kJ。
(3)若该循环过程中的气体为1 mol,气体在A状态时的体积为10 L,在B状态时压强为A状态时的。求气体在B状态时单位体积内的分子数。(已知阿伏加德罗常数NA=6.0×1023 mol-1,计算结果保留一位有效数字)
解析:(1)A→B过程中,气体温度不变,内能不变,气体体积变大,气体对外界做功,选项A错误;B→C过程中,气体对外界做功,气体内能减少,温度降低,分子平均动能减小,选项B错误;C→D过程中,气体温度不变,分子运动的剧烈程度不变,体积减小,单位体积内的分子个数增加,单位时间内碰撞单位面积器壁的分子数增多,选项C正确;D→A过程中,外界对气体做功,气体内能增大,温度升高,气体分子的速率分布曲线发生变化,选项D错误。
(2)A→B、C→D都是等温过程,内能不变,B→C为绝热膨胀,Q=0,由热力学第一定律ΔU=W<0,内能减小,D→A为绝热压缩,同理内能增加,故选“B→C”。
由热力学第一定律:W+Q1+Q2=ΔU
W=ΔU-Q1-Q2=0-63 kJ-(-38 kJ)=-25 kJ
即气体完成一次循环对外做功25 kJ。
(3)A→B为等温过程,由玻意耳定律:
pAVA=pBVB
又pB=pA
故VB=VA=×10×10-3 m3=1.5×10-2 m3
则B状态时单位体积内的分子数为:
n==4×1025 个/m3。
答案:(1)C (2)B→C 25 (3)4×1025个/m3