课件20张PPT。18.1.2平行四边形的判定(2)有两组对边分别平行的四边形叫做平行四边形平行四边形的定义平行四边形的性质:平行四边形的对边平行平行四边形的对边相等平行四边形的对角相等平行四边形的邻角互补平行四边形的对角线互相平分∵四边形ABCD是平行四边形∴AB=CD
AD=BC∴AB∥CD
AD∥BC知识点回顾从边来判定1、两组对边分别平行的四边形是平行四边形 2、两组对边分别相等的四边形是平行四边形3、一组对边平行且相等的四边形是平行四边形从角来判定两组对角分别相等的四边形是平行四边形从对角线来判定两条对角线互相平分的四边形是平行四边形知识点回顾平行四边形的判别方法如图,在平行四边形ABCD的一组对边AD、BC上截取EF=MN,连接EM、FN,EM和FN有怎样的关系?为什么?巩固练习
自学课本P.47倒数两段,解答下列问题。
1、 叫做三角形的中位线,一个三角形有 条中位线。
2.在练习本上画出一个三角形,并画出它的一条中位线。连接三角形两边中点的线段三自主学习三角形的中位线有什么性质?如图,DE是△ABC 的一条中位线. (1)量一量DE,BC的长是多少?你能作出什么猜测? (2)观察图形中的DE与BC,猜测DE 与BC 位置关系吗?几何画板验证一下
探究与思考怎样将一个三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?(1)剪一个三角形,记为△ABC;(2)沿中位线DE将△ABC剪成两部分,并将△ADE绕点E顺时针旋转180°得四边形BCFD. ABCDEF四边形BCFD是平行四边形吗? 为什么?四边形BCFD是平行四边形ABCDEF∵DE=EF ∠1=∠2 AE=EC
∴△ADE ≌ △CFE证明:如 图,延 长DE 到 F,使EF=DE ,连 结CF.∴AD=FC 、∠A=∠ECF
∴AB∥FC又AD=DB
∴BD∥ CF且 BD =CF
∴四边形BCFD是平行四边形还有另外的证法吗?∴DF∥BC,DF=BC即DE∥BC12ABCEDFCEDFBA
三角形中位线定理
三角形的中位线平行于第三边,且等于第三边的一半。 用符号语言表示∵DE是△ABC的中位线
∴ DE∥BC,
DE= BC.数量关系位置关系 (1)证明平行
(2)证明一条线段是另一条线
段的2倍或ABCDE 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线定理的主要用途:巩固新知
1.三角形的中位线_______第三边,并且______第三边的____________
2.如图:在△ABC中,DE是中位线。
(1)若∠ADE=60°,则∠B= ;
(2)若BC=8cm,则DE= cm.
(3)DE +BC=12cm,则BC=——
3.若等腰△ABC的周长是40cm,AB=AC=14cm,则中位线DE=———60°4ABCDED 8cm6cm 平行于
等于 一半 4.如图, MN 为△ABC 的中位线,若∠ABC =61°则∠AMN = ,
若MN =12 ,则BC = . 61°24 5. 如图, △ABC 中, D ,E 分别为AB,
AC 的中点,当BC =10㎝时,则DE = .5㎝ 6.如图,已知△ABC中,
AB = 3㎝,BC=3.4 ㎝ AC=4㎝ 且D,E,F分别为 AB,BC,AC边的中点,则△DEF的周长
是 ㎝.
5.27、如下图:在Rt △ ABC中,∠A=90°,D、E、F分别是各边中点, AB=6cm,AC=8cm,则△DEF的周长= cm。12EFBACD 已知:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。
求证:四边形EFGH是平行四边形。挑战自我知识总结:
1。判定定理:一组对边平行且相等的四边形是平行四边形
2.定义 :连接三角形两边中点的线段叫做三角形的中位线
3.三角形的中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。数学思想:转化思想
1.把四边形的问题转化为三角形问题解决
2.线段的倍分问题可转化为相等问题来解决.
数学方法:在三角形的中位线定理的发现过程用到画图、测量、猜想、验证、证明等数学方法本节课你有哪些收获?