第五节物体的内能
1.分子由于热运动而具有动能,因分子热运动的无规则性,研究热现象时,我们研究的是物体内所有分子动能的平均值,这个动能叫做分子的平均动能,它的标志是温度。
2.分子势能和重力势能类似,它是由分子力和分子间的相对位置所决定的势能,它与分子间距离的变化规律可用分子力做功来恒量,分子力做正功,分子势能减少,分子力做负功,分子势能增加,且分子力做功的数值等于分子势能的变化量。
3.物体的内能包括物体中所有分子的动能和势能,它从宏观上决定于物质的量、温度、体积,同时受物态变化的影响。
4.气体分子间距离大约为分子直径的10倍,分子间的作用力十分微弱,当气体分子间距离变化时,分子力所做的功非常小,因此,分子势能的变化可以忽略。
5.一般情况下,人们把气体分子看作没有相互作用的质点,这种气体的简化模型称为理想气体微观模型,因此,它的内能只取决于物质的量和温度这两个宏观量。
分子动能和分子势能
1.分子的动能
(1)定义:分子由于热运动而具有的动能。
(2)分子的动能与温度的关系
①单个分子的动能
由于分子运动的无规则性,在某时刻物体内部各个分子的动能大小不一,就是同一个分子,在不同时刻的动能也是不同的,所以单个分子的动能没有意义。
②分子的平均动能
温度是分子平均动能的标志,这是温度的微观意义,在相同温度下,各种物质分子的平均动能都相同,由于不同物质分子的质量不一定相同,因此相同温度时不同物质分子的平均速率不一定相同。
2.分子势能
(1)定义:分子间由分子力和分子间的相对位置决定的势能。
(2)分子势能与分子间距离的关系
分子势能的大小与分子间的距离有关,宏观上与物体的体积有关。分子势能的变化与分子间的距离发生变化时分子力做正功还是负功有关。
①当分子间的距离r>r0时,分子间的作用力表现为引力,分子间的距离增大时,分子力做负功,因此分子势能随分子间的距离增大而增大。
②当分子间的距离r③如果取两个分子间相距无限远时(此时分子间作用力可忽略不计)的分子势能为零,分子势能Ep与分子间距离r的关系可用如图所示的曲线表示。从图线上看出,当r=r0时,分子势能最小。
(1)热现象研究的是大量分子运动的宏观表现,有意义的是物体内所有分子热运动的平均动能。
(2)物体的温度升高,分子的热运动加剧,分子的平均动能增大,并不是每个分子的动能都增大。温度只与物体内大量分子热运动的统计意义上的平均动能相对应。
(3)分子势能同重力势能、弹性势能、电势能一样,都是与某种力对应又由相对应位置决定的能量,且该种力做功等于对应势能的变化。
1.相同质量的氧气和氢气温度相同,下列说法正确的是( )
A.每个氧分子的动能都比氢分子的动能大
B.每个氢分子的速率都比氧分子的速率大
C.两种气体的分子平均动能一定相等
D.两种气体的分子势能一定相等
解析:选C 温度是分子平均动能的标志,氧气和氢气的温度相同,其分子的平均动能应相同,但分子的运动速率有的大,有的小,各个分子的动能并不相同,只是所有分子的动能的平均值相同。分子势能与分子间距离有关,即与体积有关,因此无法比较两种气体的分子势能,因此,只有C选项正确。
物体的内能
1.定义
物体中所有分子做热运动的动能和分子势能的总和。
2.内能的决定因素
(1)任何物体都具有内能,因为一切物体都是由不停地做无规则热运动且相互作用着的分子所组成的。
(2)决定物体内能的因素:从宏观上看:物体内能的大小由物体的摩尔数、温度和体积三个因素决定。从微观上看:物体内能的大小由组成物体的分子总数、分子热运动的平均动能和分子间的距离三个因素决定。
3.理想气体及其内能
(1)理想气体微观模型:把一般情况下的气体分子看作是没有相互作用的质点。
(2)理想气体的内能
①忽略气体分子的相互作用力和分子势能。
②从宏观上看,理想气体的内能由气体的摩尔数、温度二个因素决定。从微观上看,由组成气体的分子总数和分子热运动的平均动能决定。
4.内能与机械能的区别和联系
项目
内能
机械能
对应的运动形式
微观分子的热运动
宏观物体的机械运动
决定因素
物质的量、物体的温度和体积及物态
物体的机械运动的速度、离地高度(或相对于零势能面的高度或弹性形变)
是否为零
永远不能等于零
一定条件下可以等于零
联系
在一定条件下可以相互转化
(1)研究物体的内能变化时,要从分子动能和分子势能两个方面全面考虑(理想气体除外),物体温度升高时,内能不一定增加,温度不变,内能可能改变,温度降低,内能可能增加。
(2)研究热现象时,一般不考虑机械能。在机械运动中有摩擦时,有可能发生机械能转化为内能。
2.关于机械能和内能,下列说法中正确的是( )
A.机械能大的物体,其内能一定很大
B.物体的机械能损失时,内能却可以增加
C.物体的内能损失时,机械能必然减少
D.物体的内能为零时,机械能可以不为零
解析:选B 内能和机械能是两种不同形式的能量,两者并不存在必然联系。只有在系统的能量转化形式发生在机械能与内能之间时,机械能的损失才等于内能的增加,故A、C错,B对;因为物质分子总在不停地做无规则热运动,故内能不可能为零,D错。
分子势能与分子间距离的变化关系
[例1] 由于两个分子间的距离变化而使得分子势能变小,可确定在这一过程中( )
A.两分子间的相互作用力一定表现为引力
B.一定克服分子间的相互作用力做功
C.两分子间距离一定增大
D.两分子间的相互作用力可能增大
[解析] 由分子力做功与分子势能变化关系可知,分子力做正功时,分子势能减小,有两种可能性:一是r<r0,分子力表现为斥力,且分子间距离增大,二是r>r0,分子间表现为引力,且分子间距离减小。综上分析可知A、B、C选项错误,D选项正确。
[答案] D
借 题
发 挥
(1)分子势能的变化与分子力做功直接相关,分子力做正功,分子势能减小;分子力做负功,分子势能增加,且分子力做功的数值等于分子势能的变化量。
(2)要特别注意,当r=r0时,分子势能最小,但一般不为零,它的值,只有在确定了零势能点后才能确定,可以类比重力势能的相对性帮助理解。
分子的动能、势能、物体内能的关系分析
[例2] 关于物体的温度与分子动能的关系,正确的说法是( )
A.某种物体的温度是0 ℃,说明物体中分子的平均动能为零
B.物体温度降低时,每个分子的动能都减小
C.物体温度升高时速率小的分子数目减少,速率大的分子数目增多
D.物体的运动速度越大,则物体的温度越高
[解析] 温度是分子平均动能的标志。温度是0 ℃,物体中分子的平均动能并非为零,因为分子无规则运动不会停止,A错误;温度降低时分子的平均动能减小,并非每个分子动能都减小,B错误;物体温度升高时,分子的平均动能增大,分子的平均速率增大,速率小的分子数目减少,速率大的分子数目增多,C正确;物体的运动速度增大,宏观机械能(动能)增大,但物体内分子的热运动不一定加剧,温度不一定升高,D错误。
[答案] C
借 题
发 挥
(1)无论什么种类的分子,只要温度相同,分子的平均动能就一定相同。
(2)解决有关内能的问题时,要理解内能的特点,清楚物体内能大小的决定因素,知道物体的内能与物质的量、温度、体积和物质的存在状态都有关,但温度高或体积大的物体内能不一定大,在分析物体的内能时一定要综合考虑影响内能的各要素。
1.[多选]关于分子的动能,下列说法中正确的是( )
A.物体运动速度大,物体内分子的动能一定大
B.物体的温度升高,物体内每个分子的动能都增大
C.物体的温度降低,物体内大量分子的平均动能一定减小
D.物体内分子的平均动能与物体做机械运动的速度大小无关
解析:选CD 分子的动能与物体的机械能的速度无关,A错;温度升高,分子的平均动能一定增加,但对单个分子来讲,其动能可能增加也可能减小,B错;只有C、D正确。
2.[多选]如图所示为物体分子间相互作用力与分子间距离之间的关系,下列判断中正确的是( )
A.当rB.当r>r0时,r越小,则分子势能Ep越大
C.当r=r0时,分子势能最小
D.当r→∞时,分子势能最小
解析:选AC 由当分子间的距离r3.[多选]伽利略在1593年,制造了世界上第一个温度计——空气温度计,如图所示,一个细长颈的球形瓶倒插在装有红色液体的槽中,细管中的液面清晰可见,如果不考虑外界大气压的变化,就能根据液面的变化测出温度的变化,则( )
A.该温度计的测温物质是槽中的液体
B.该温度计的测温物质是细管中的红色液体
C.该温度计的测温物质是球形瓶中的空气
D.该温度计是利用测温物质的热胀冷缩性质制造的
解析:选CD 细管中的红色液体是用来显示球形瓶中空气的体积随温度变化情况的,测温物质是球形瓶中封闭的空气,该温度计是利用它的热胀冷缩的性质制造的,故A、B错,C、D正确。
4.对于分子势能与体积的关系,下列说法中正确的是( )
A.物体体积增加,分子势能增大
B.气体分子的距离增大,分子势能减小
C.物体体积增大,分子势能有可能增加
D.物体体积减小,分子势能增加
解析:选C 分子势能与分子间距离有关,与物体体积也有关,但不能简单地讲:分子间距离增大,或物体体积增大,分子势能一定增大,所以A、B、D错,C正确。
5.关于物体的内能,正确的说法是( )
A.温度、质量相同的物体具有相等的内能
B.物体的内能与物体的体积有关
C.机械能越大的物体,内能也一定越大
D.温度相同的两物体具有相同的内能
解析:选B 物体内所有分子的动能与势能之和叫内能,温度相同,分子平均动能相同;质量相同,分子个数不一定相同,还有分子势能,故A、D错误,机械能大的物体内能不一定大,故C错误。
6.[多选]若把常温、常压下的氢气和氮气看作理想气体,下面说法正确的是( )
A.相同温度下,氮分子和氢分子具有相同的平均速率
B.在相同温度下,氮分子和氢分子具有相同的平均动能
C.体积和温度都相同的氢气和氮气具有相同的内能
D.摩尔数和温度都相同的氢气和氮气具有相同的内能
解析:选BD 相同温度时,任何种类的物质分子的平均动能都相同,B项正确;理想气体无分子势能,它的内能只取决于物质的量和温度,故D项正确。
7.严冬,湖面上结了厚厚的冰,但冰下面鱼儿仍在游动,为了测出冰下水的温度,徐强同学在冰上打了一个洞,拿来一支实验室温度计,用下列四种方法测水温,正确的做法是( )
A.用线将温度计拴牢从洞中放入水里,待较长时间后从水中提出,读出示数
B.取一塑料饮水瓶,将瓶拴住从洞中放入水里,水灌满瓶后取出,再用温度计测瓶中水的温度
C.取一塑料饮水瓶,将温度计悬吊在瓶中,再将瓶拴住从洞中放入水里,水灌满瓶后待较长时间,然后将瓶提出,立即从瓶外观察温度计的示数
D.手拿温度计,从洞中将温度计插入水中,待较长时间后取出立即读出示数
解析:选C 用线将温度计拴牢从洞中放入水中,待较长时间后从水中提出,读出示数,不符合温度计的使用方法,故A错;水灌满瓶后取出,温度会升高,不再是湖水的温度,相当于取出温度计读数,故B错;取一塑料饮水瓶,将温度计悬吊在瓶中,再将瓶拴住从洞中放入水里,水灌满瓶后待较长时间,然后将瓶取出,立即从瓶外观察温度计示数,这样能保证瓶取出后,温度计的示数不会降低,故C正确;取出温度计读出示数,不符合温度计的使用方法,故D错。
8.甲、乙两个分子相距较远(此时它们之间的分子力可以忽略),设甲固定不动,在乙逐渐向甲靠近直到不能再靠近的过程中,关于分子势能变化情况的下列说法正确的是( )
A.分子势能不断增大
B.分子势能不断减小
C.分子势能先增大后减小
D.分子势能先减小后增大
解析:选D 从分子间的作用力与分子间的距离的关系知道,当分子间距离大于r0时,分子力表现为引力;当分子间距离小于r0时,分子力表现为斥力;当分子间距离大于10r0时,分子间的作用力十分小,可以忽略。所以当乙从较远处向甲尽量靠近的过程中,分子力先是对乙做正功,后是分子力对乙做负功或者乙克服分子力做功,而由做功与分子势能变化的关系知道,若分子力做正功,分子势能减小,若分子力做负功,分子势能增加。因此当乙尽量向甲靠近的过程中,分子势能是先减小后增大。D项正确。
9.[多选]把一个物体竖直下抛,下列哪种情况是在下落的过程中发生的(不考虑空气阻力)( )
A.物体的动能增大,分子的平均动能也增大
B.物体的重力势能减小,分子势能却增大
C.物体的机械能保持不变
D.物体的内能保持不变
解析:选CD 物体下落过程,不考虑空气阻力,只有系统内的重力做功,机械能不变;物体下落过程中,物体的温度和体积也没有发生变化,所以分子热运动的平均动能和分子势能都保持不变,因此,选项A、B是错误的。
10.一定质量的0℃的冰融化成0℃的水时其分子动能之和Ek与分子势能之和Ep及物体内能E的变化情况为( )
A.Ek变大,Ep变大,E变大
B.Ek变小,Ep变小,E变小
C.Ek不变,Ep变大,E变大
D.Ek不变,Ep变小,E变小
解析:选C 温度是分子平均动能的标志,温度相同,平均动能一定相同。0℃的冰融化成0℃的水,分子个数不变,总动能Ek相同。但融化过程中吸收热量,内能E增大,所以分子势能增大,C对,A、B、D错。
11.有甲、乙两种气体,如果甲气体内分子平均速率比乙气体内平均速率大,则( )
A.甲气体的温度一定高于乙气体的温度
B.甲气体的温度一定低于乙气体的温度
C.甲气体的温度可能高于也可能低于乙气体的温度
D.甲气体的每个分子运动都比乙气体每个分子运动得快
解析:选C 认为气体分子平均速率大,温度就高,这是对气体温度的微观本质的错误认识,气体温度是气体分子平均动能的标志,而分子的平均动能不仅与分子的平均速率有关,还与分子的质量有关。本题涉及两种不同气体(分子质量不同),它们的分子质量无法比较,因而无法比较两种气体温度的高低,故A、B错误,C正确;速率的平均值大,并不一定每个分子速率都大,故D错误。
12.[多选]如图所示,甲分子固定于坐标原点,乙分子位于横轴上,甲、乙两分子间引力、斥力及分子势能的大小变化情况分别如图中三条曲线所示,A、B、C、D为横轴上四个特殊的位置;E为两虚线a、b的交点,现把乙分子从A处由静止释放,则由图像可知( )
A.虚线a为分子间斥力变化图线,交点E的横坐标代表乙分子到达该点时分子力为零
B.虚线b为分子间引力变化图线,表明分子间引力随距离增大而减小
C.实线c为分子势能的变化图线,乙分子到达C点时分子势能最小
D.乙分子从A到C的运动过程中一直做加速运动
解析:选AB 分子间的引力和斥力都随分子间距离r的增大而减小,随分子间距离r的减小而增大,但斥力变化得快,故虚线a为分子间斥力变化图线,虚线b为分子间引力变化图线,交点E说明分子间的引力、斥力大小相等,分子力为零,选项A、B正确;实线c为分子势能的变化图线,乙分子到达B点时分子势能最小,为负值,选项C错误;乙分子从A到C的运动过程中分子力先表现为引力,到达B点后表现为斥力,所以乙分子先做加速运动,后做减速运动,选项D错误。
13.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示。F>0为斥力,F<0为引力。a、b、c、d为x轴上四个特定的位置。现把乙分子从a处由静止释放,若规定无限远处分子势能为零,则:
(1)乙分子在何处的势能最小?是正值还是负值?
(2)乙分子的运动范围多大?
(3)在乙分子运动的哪个范围内分子力和分子势能随距离的减小都增加?
解析:(1)由于乙分子由静止开始,在ac间一直受到甲分子的引力而做加速运动,引力做正功,分子势能一直在减小,到达c点时所受分子力为零,加速度为零,速度最大,动能最大,分子势能最小(为负值)。
(2)由于惯性,到达c点后乙分子继续向甲分子靠近,由于分子力为斥力,故乙分子做减速运动,直到速度为零,设到达d点后返回,故乙分子运动范围在ad之间。
(3)在分子力表现为斥力的那一段cd上,随分子间距的减小,乙分子克服斥力做功,分子力、分子势能随间距的减小一直增加。
答案:见解析