课件17张PPT。1.3.1 柱体、锥体、台体的
表面积与体积 设长方体的长宽高分别为a、b、h,则其表面积为探究一:你知道正方体和长方体的展开图与其表面积的关系吗S=2(ab+ah+bh)特别地,正方体的表面积为S=6a2多面体的表面积问题1:棱柱,棱锥,棱台也是由多个平面图形围成的多面体,它们的展开图是什么?如何计算它们的表面积?
棱柱的表面积=2 ?底面积+侧面积棱锥的表面积=底面积+侧面积侧面积是各个侧面面积之和棱台的表面积=上底面积+下底面积+侧面积多面体的表面积 例1 已知棱长为a,底面为正方形,各侧面均
为等边三角形的四棱锥S-ABCD,求它的表面积.多面体的表面积圆柱问题2:请根据圆柱,圆锥的几何特征,思考一下, 它们的展开图形是什么?如何求它们的表面积?
旋转体的表面积圆锥圆台旋转体的表面积问题3:联系圆柱和圆锥的展开图,你能想象圆台展开图的形状吗?如果圆台的上下底面半径分别为r′、r ,母线长为l,你能计算出它的表面积吗?
问题4:圆柱,圆锥,圆台三者的表面积公式之间有什么关系? 例2 一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm,为了美化花盆的外观,需要涂油漆. 已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(精确到1毫升)? 旋转体的表面积探究二:柱体,锥体,台体的体积
提出问题:在初中,我们学过正方体,长方体,圆柱和圆锥的体积公式,你还记得吗?正方体,长方体和圆柱的体积公式组卷网柱体的体积 V=Sh棱柱和圆柱的体积ABCDEOS棱锥和圆锥的体积问题5:棱台和圆台的体积如何得到呢?棱台和圆台的体积zxxkw问题6:柱体、锥体、台体的体积公式之
间有什么关系? 例3 如图,已知螺帽的底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,求这个螺帽的体积?组合体的体积1.学到了哪些知识?2.巩固了哪些数学方法?3.运用了什么数学思想?转化和类比的思想课堂小结表面积体积由特殊到一般,再由一般到具体的应用柱体、锥体、台体的表面积知识小结(一)柱体、锥体、台体的体积知识小结(二)课时跟踪检测(五) 柱体、锥体、台体的表面积与体积
层级一 学业水平达标
1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( )
A.22 B.20
C.10 D.11
解析:选A 所求长方体的表面积S=2×(1×2)+2×(1×3)+2×(2×3)=22.
2.若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( )
A.1∶2 B.1∶
C.1∶ D.∶2
解析:选C 设圆锥底面半径为r,则高h=2r,∴其母线长l=r.∴S侧=πrl=πr2,S底=πr2,S底∶S侧=1∶.
3.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )
A.90π B.63π
C.42π D.36π
解析:选B 法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V=π×32×10-×π×32×6=63π.
法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V=π×32×7=63π.
4.已知某圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则该圆台较小底面的半径为( )
A.7 B.6
C.5 D.3
解析:选A 设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.
5.如图,ABC-A′B′C′是体积为1的棱柱,则四棱锥C-AA′B′B的体积是( )
A. B.
C. D.
解析:选C ∵VC-A′B′C′=VABC-A′B′C′=,∴VC-AA′B′B=1-=.
6.棱长都是3的三棱锥的表面积S为________.
解析:因为三棱锥的四个面是全等的正三角形,所以S=4××32=9.
答案:9
7.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.
解析:易知圆锥的母线长l=2,设圆锥的底面半径为r,则2πr=×2π×2,∴r=1,∴圆锥的高h==,则圆锥的体积V=πr2h=π.
答案:π
8.如图是一个几何体的三视图,若它的体积是3 ,则a=________.
解析:由三视图,可知几何体为一个放倒的直三棱柱,则该几何体的体积V=3×=3 ,所以a=.
答案:
9.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,若四边形ABCD绕AD旋转一周成为几何体.
(1)画出该几何体的三视图;
(2)求出该几何体的表面积.
解:(1)如图所示.
(2)过C作CE垂直AD延长线于E点,
作CF垂直AB于F点.
由已知得:DE=2,CE=2,
∴CF=4,BF=5-2=3.
∴BC==5.
∴下底圆面积S1=25π,
台体侧面积S2=π×(2+5)×5=35π,
锥体侧面积S3=π×2×2=4π,
故表面积S=S1+S2+S3=(60+4)π.
10.如图,已知正三棱锥S-ABC的侧面积是底面积的2倍,正三棱锥的高SO=3,求此正三棱锥的表面积.
解:如图,设正三棱锥的底面边长为a,斜高为h′,过点O作OE⊥AB,与AB交于点E,连接SE,则SE⊥AB,SE=h′.
∵S侧=2S底,
∴·3a·h′=a2×2.
∴a=h′.
∵SO⊥OE,∴SO2+OE2=SE2.
∴32+2=h′2.
∴h′=2,∴a=h′=6.
∴S底=a2=×62=9,S侧=2S底=18.
∴S表=S侧+S底=18+9=27.
层级二 应试能力达标
1.正方体的表面积为96,则正方体的体积为( )
A.48 B.64
C.16 D.96
解析:选B 设正方体的棱长为a,则6a2=96,∴a=4,故V=a3=43=64.
2.已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形,如图,则三棱锥B-AB1C的体积为( )
A. B.
C. D.
解析:选D VB-AB1C=VB1-ABC=S△ABC×h=××3=.
3.一个几何体的三视图如图所示,则该几何体的表面积为( )
A.3π B.4π
C.2π+4 D.3π+4
解析:选D 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.
表面积为2×2+2××π×12+π×1×2=4+3π.
4.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图如图所示,则该几何体的体积( )
A. B.
C. D.
解析:选A 由三视图知该几何体左边是四棱锥,即“阳马”,底面边长为1和 ,高为1,其体积V1=×1××1=;
右边是直三棱柱,即“堑堵”,底面边长是和1的直角三角形,高为1,其体积V2=×1××1=;
故该几何体的体积V=V1+V2=+=.
5.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为________.
解析:该几何体是高为1,底面四边形为对角线长为2的菱形的四棱锥A-BCDE,如图所示,在直角三角形ABE中,AB=1,BE=,∴AE=.
在三角形AED中,AE=,ED=,AD=,
∴AE2+DE2=AD2,∴三角形AED是直角三角形,
则该几何体的侧面积为S=2×+2×=+.
答案:+
6.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.
解析:如图①为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为2,其面积为8.
答案:8
7.如图所示,已知某几何体的三视图如下(单位:cm).
(1)画出这个几何体(不要求写画法);
(2)求这个几何体的表面积及体积.
解:(1)这个几何体如图所示.
(2)这个几何体可看成是正方体AC1及直三棱柱B1C1Q-A1D1P的组合体.
由PA1=PD1=,A1D1=AD=2,可得PA1⊥PD1.
故所求几何体的表面积S=5×22+2×2×+2××()2=(22+4)cm2,
所求几何体的体积V=23+×()2×2=10(cm3).
8.一个圆锥的底面半径为2 cm,高为6 cm,在其内部有一个高为x cm的内接圆柱.
(1)求圆锥的侧面积.
(2)当x为何值时,圆柱的侧面积最大?并求出侧面积的最大值.
解:(1)圆锥的母线长为=2(cm),
∴圆锥的侧面积S1=π×2×2=4 π(cm2).
(2)画出圆锥的轴截面如图所示:
设圆柱的底面半径为r cm,由题意,知=,
∴r=,∴圆柱的侧面积S2=2πrx=(-x2+6x)=-[(x-3)2-9],
∴当x=3时,圆柱的侧面积取得最大值,且最大值为6π cm2.
1.3.1 柱体、锥体、台体的表面积与体积
预习课本P23~27,思考并完成以下问题
1.棱柱、棱锥、棱台的表面积如何计算?
2.圆柱、圆锥、圆台的侧面展开图分别是什么?
3.圆柱、圆锥、圆台的侧面积公式是什么?
4.柱体、锥体、台体的体积公式分别是什么?
5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?
1.柱体、锥体、台体的表面积公式
图形
表面积公式
多面体
多面体的表面积就是各个面的面积的和,也就是展开图的面积
旋转体
圆柱
底面积:S底=πr2
侧面积:S侧=2πrl
表面积:S=2πrl+2πr2
圆锥
底面积:S底=πr2
侧面积:S侧=πrl
表面积:S=πrl+πr2
圆台
上底面面积:S上底=πr′2
下底面面积:S下底=πr2
侧面积:S侧=πl(r+r′)
表面积:S=π(r′2+r2+r′l+rl)
2.柱体、锥体、台体的体积公式
柱体的体积公式V=Sh(S为底面面积,h为高);
锥体的体积公式V=Sh(S为底面面积,h为高);
台体的体积公式V=(S′++S)h.
[点睛] (1)圆柱、圆锥、圆台的侧面积公式之间的关系:
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)锥体的体积等于底面面积与高之积( )
(2)台体的体积可转化为两个锥体的体积之差( )
答案:(1)× (2)√
2.侧面都是等腰直角三角形的正三棱锥,底面边长为a时,该三棱锥的表面积是( )
A.a2 B.a2
C.a2 D.a2
解析:选A ∵侧面都是等腰直角三角形,故侧棱长等于a,∴S表=a2+3××2=a2.
3.若圆锥的底面半径为3,母线长为5,则圆锥的体积是________.
解析:由已知圆锥的高h=4,
所以V圆锥=π×32×4=12π.
答案:12π
柱、锥、台的表面积
[典例] 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.
[解] 如图,设底面对角线AC=a,BD=b,交点为O,对角线A1C=15,B1D=9,
∴a2+52=152,b2+52=92,
∴a2=200,b2=56.
∵该直四棱柱的底面是菱形,
∴AB2=2+2===64,∴AB=8.
∴直四棱柱的侧面积S=4×8×5=160.
(1)求几何体的表面积问题,通常将所给几何体分成基本几何体,再通过这些基本几何体的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.
(2)结合三视图考查几何体的表面积是高考的热点,解决此类问题的关键是正确地观察三视图,把它还原为直观图,特别要注意从三视图中得到几何体的相关量,再结合表面积公式求解.
[活学活用]
1.(2016·全国卷Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18
C.90 D.81
解析:选B 由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×3)×2=54+18.故选B.
2.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )
A.81π B.100π
C.168π D.169π
解析:选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r,下底面半径为R,则它的母线长为l===5r=10,所以r=2,R=8.
故S侧=π(R+r)l=π(8+2)×10=100π,
S表=S侧+πr2+πR2=100π+4π+64π=168π.
柱体、锥体、台体的体积
[典例] 一空间几何体的三视图如图所示,则该几何体的体积为( )
A.2π+2 B.4π+2
C.2π+ D.4π+
[解析] 该空间几何体由一圆柱和一正四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为,高为,所以体积为×()2×=,所以该几何体的体积为2π+.
[答案] C
空间几何体体积问题的常见类型及解题策略
(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.
(2)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.
[活学活用]
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B.
C. D.
解析:选A 由三视图可知,该几何体为一个三棱柱截去一个三棱锥,三棱柱的体积为×2××2=2,截去的三棱锥的体积为××2××1=,所以该几何体的体积为2-=,故选A.
2.已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是________.
解析:设圆台的上、下底面半径分别为r和R,母线长为l,高为h,则S上=πr2=π,S下=πR2=4π,∴r=1,R=2,S侧=π(r+R)l=6π,∴l=2,∴h=,∴V=π(12+22+1×2)×=π.
答案:π
几何体体积的求法
题点一:等积变换法
1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A-DED1的体积为________.
解析:V三棱锥A-DED1=V三棱锥E-DD1A=××1×1×1=.
答案:
2.如图所示,三棱锥的顶点为P,PA,PB,PC为三条侧棱,且PA,PB,PC两两互相垂直,又PA=2,PB=3,PC=4,求三棱锥P-ABC的体积V.
解:三棱锥的体积V=Sh,其中S为底面积,h为高,而三棱锥的任意一个面都可以作为底面,所以此题可把B看作顶点,△PAC作为底面求解.
故V=S△PAC·PB=××2×4×3=4.
题点二:分割法
3.如图,在多面体ABCDEF中,已知面ABCD是边长为4的正方形,EF∥AB,EF=2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.
解:如图,连接EB,EC.四棱锥E-ABCD的体积
V四棱锥E-ABCD=×42×3=16.
∵AB=2EF,EF∥AB,
∴S△EAB=2S△BEF.
∴V三棱锥F-EBC=V三棱锥C-EFB=V三棱锥C-ABE=V三棱锥E-ABC=×V四棱锥E-ABCD=4.
∴多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.
题点三:补形法
4.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.
解:用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.
5.已知四面体ABCD中,AB=CD=,BC=AD=2,BD=AC=5,求四面体ABCD的体积.
解:以四面体的各棱为对角线还原为长方体,如图.
设长方体的长、宽、高分别为x,y,z,
则∴
∵VD-ABE=DE·S△ABE=V长方体,
同理,VC-ABF=VD-ACG=VD-BCH=V长方体,
∴V四面体ABCD=V长方体-4×V长方体=V长方体.
而V长方体=2×3×4=24,∴V四面体ABCD=8.
(1)三棱锥又称为四面体,它的每一个面都可当作底面来处理,这一方法叫作体积转移法(或称等积法).
(2)当所给几何体形状不规则时,无法直接利用体积公式求解,这时可通过分割或补形,将原几何体分割或补形成较易计算体积的几何体,从而求出原几何体的体积.
层级一 学业水平达标
1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( )
A.22 B.20
C.10 D.11
解析:选A 所求长方体的表面积S=2×(1×2)+2×(1×3)+2×(2×3)=22.
2.若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( )
A.1∶2 B.1∶
C.1∶ D.∶2
解析:选C 设圆锥底面半径为r,则高h=2r,∴其母线长l=r.∴S侧=πrl=πr2,S底=πr2,S底∶S侧=1∶.
3.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )
A.90π B.63π
C.42π D.36π
解析:选B 法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V=π×32×10-×π×32×6=63π.
法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V=π×32×7=63π.
4.已知某圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则该圆台较小底面的半径为( )
A.7 B.6
C.5 D.3
解析:选A 设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.
5.如图,ABC-A′B′C′是体积为1的棱柱,则四棱锥C-AA′B′B的体积是( )
A. B.
C. D.
解析:选C ∵VC-A′B′C′=VABC-A′B′C′=,∴VC-AA′B′B=1-=.
6.棱长都是3的三棱锥的表面积S为________.
解析:因为三棱锥的四个面是全等的正三角形,所以S=4××32=9.
答案:9
7.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.
解析:易知圆锥的母线长l=2,设圆锥的底面半径为r,则2πr=×2π×2,∴r=1,∴圆锥的高h==,则圆锥的体积V=πr2h=π.
答案:π
8.如图是一个几何体的三视图,若它的体积是3 ,则a=________.
解析:由三视图,可知几何体为一个放倒的直三棱柱,则该几何体的体积V=3×=3 ,所以a=.
答案:
9.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,若四边形ABCD绕AD旋转一周成为几何体.
(1)画出该几何体的三视图;
(2)求出该几何体的表面积.
解:(1)如图所示.
(2)过C作CE垂直AD延长线于E点,
作CF垂直AB于F点.
由已知得:DE=2,CE=2,
∴CF=4,BF=5-2=3.
∴BC==5.
∴下底圆面积S1=25π,
台体侧面积S2=π×(2+5)×5=35π,
锥体侧面积S3=π×2×2=4π,
故表面积S=S1+S2+S3=(60+4)π.
10.如图,已知正三棱锥S-ABC的侧面积是底面积的2倍,正三棱锥的高SO=3,求此正三棱锥的表面积.
解:如图,设正三棱锥的底面边长为a,斜高为h′,过点O作OE⊥AB,与AB交于点E,连接SE,则SE⊥AB,SE=h′.
∵S侧=2S底,
∴·3a·h′=a2×2.
∴a=h′.
∵SO⊥OE,∴SO2+OE2=SE2.
∴32+2=h′2.
∴h′=2,∴a=h′=6.
∴S底=a2=×62=9,S侧=2S底=18.
∴S表=S侧+S底=18+9=27.
层级二 应试能力达标
1.正方体的表面积为96,则正方体的体积为( )
A.48 B.64
C.16 D.96
解析:选B 设正方体的棱长为a,则6a2=96,∴a=4,故V=a3=43=64.
2.已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形,如图,则三棱锥B-AB1C的体积为( )
A. B.
C. D.
解析:选D VB-AB1C=VB1-ABC=S△ABC×h=××3=.
3.圆柱的一个底面积是S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( )
A.4πS B.2πS
C.πS D.πS
解析:选A 底面半径是,所以正方形的边长是2π=2,故圆柱的侧面积是(2)2=4πS.
4.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B.
C. D.
解析:选A 由三视图可知,该几何体是正三棱柱的一部分,如图所示,其中底面三角形的边长为2,故所求的体积为×22×2-××22×1=.
5.已知一个长方体的三个面的面积分别是,,,则这个长方体的体积为________.
解析:设长方体从一点出发的三条棱长分别为a,b,c,则三式相乘得(abc)2=6,故长方体的体积V=abc=.
答案:
6.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.
解析:如图①为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为2,其面积为8.
答案:8
7.如图所示,已知某几何体的三视图如下(单位:cm).
(1)画出这个几何体(不要求写画法);
(2)求这个几何体的表面积及体积.
解:(1)这个几何体如图所示.
(2)这个几何体可看成是正方体AC1及直三棱柱B1C1Q-A1D1P的组合体.
由PA1=PD1=,A1D1=AD=2,可得PA1⊥PD1.
故所求几何体的表面积S=5×22+2×2×+2××()2=(22+4)cm2,
所求几何体的体积V=23+×()2×2=10(cm3).
8.一个圆锥的底面半径为2 cm,高为6 cm,在其内部有一个高为x cm的内接圆柱.
(1)求圆锥的侧面积.
(2)当x为何值时,圆柱的侧面积最大?并求出侧面积的最大值.
解:(1)圆锥的母线长为=2(cm),
∴圆锥的侧面积S1=π×2×2=4 π(cm2).
(2)画出圆锥的轴截面如图所示:
设圆柱的底面半径为r cm,由题意,知=,
∴r=,∴圆柱的侧面积S2=2πrx=(-x2+6x)=-[(x-3)2-9],
∴当x=3时,圆柱的侧面积取得最大值,且最大值为6π cm2.