2018-2019学年高中数学人教A版必修二课件讲义与练习:空间几何体的直观图

文档属性

名称 2018-2019学年高中数学人教A版必修二课件讲义与练习:空间几何体的直观图
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-04-20 09:24:34

文档简介

课件19张PPT。空间几何体的直观图让国人自豪的中国泰安号特种半潜运输船2. 将一个水平放置的平面图形(立体图形)画在纸上,怎样画才有立体感呢?1.如何将一个直立放置的平面图形画在纸上?(1)太阳光线(假定太阳光线是平行的)把一个长方形形状的窗框投射到地板上,变成了什么图形? (2)上述窗框的投影图形与原窗框图比较,哪些几何关系或几何量发生了变化?哪些没有发生变化?AB’A’BMM’PP’直观图:
表示空间图形的平面图形,叫做空间图形的直观图.如何画空间图形的直观图?斜二测画法例1 画水平放置的边长为2 cm的正三角形的直观图. C1B1A1例2 作一个底面边长为5cm,高为11.5cm的正五棱锥直观图.(比例尺1:5)
比例尺:图上和实际距离的比MNA1B1E1C1o1zS四个步骤:取轴、画轴、取点、画点.例4 画棱长为2 cm的正方体的直观图.1.下列说法是否正确? (1)水平放置的正方形的直观图可能是梯形.(2)两条相交直线的直观图可能平行. (3)互相垂直的两条直线的直观图仍然互相垂直.(×)(×)(×)(4)等腰三角形的水平放置的直观图仍是等腰三角形.(×)BCD1.掌握斜二测画法的一般步骤与作图规则.
2.学会由特殊到一般,再由一般到特殊的思维方式.学习方法报课时跟踪检测(四) 空间几何体的直观图
层级一 学业水平达标
1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为(  )
A.90°,90°       B.45°,90°
C.135°,90° D.45°或135°,90°
解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.
2.若把一个高为10 cm的圆柱的底面画在x′O′y′平面上,则圆柱的高应画成(  )
A.平行于z′轴且大小为10 cm
B.平行于z′轴且大小为5 cm
C.与z′轴成45°且大小为10 cm
D.与z′轴成45°且大小为5 cm
解析:选A 平行于z轴(或在z轴上)的线段,在直观图中的方向和长度都与原来保持一致.
3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的(  )
解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.
4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中(  )
A.最长的是AB,最短的是AC
B.最长的是AC,最短的是AB
C.最长的是AB,最短的是AD
D.最长的是AD,最短的是AC
解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.
5.水平放置的△ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形A′B′C′,则△ABC是(  )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.任意三角形
解析:选C 将△A′B′C′还原,由斜二测画法知,△ABC为钝角三角形.
6.水平放置的正方形ABCO如图所示,在平面直角坐标系xOy中,点B的坐标为(4,4),则由斜二测画法画出的该正方形的直观图中,顶点B′到x′轴的距离为________.
解析:由斜二测画法画出的直观图如图所示,作B′E⊥x′轴于点E,在Rt△B′EC′中,B′C′=2,∠B′C′E=45°,所以B′E=B′C′sin 45°=2×=.
答案:
7.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=3,B′C′∥x′轴,则原平面图形的面积为________.
解析:在直观图中,设B′C′与y′轴的交点为D′,则易得O′D′=3,所以原平面图形为一边长为6,高为6的平行四边形,所以其面积为6×6=36.
答案:36
8.在直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在坐标系xOy中原四边形OABC为________(填形状),面积为________cm2.
解析:由题意,结合斜二测画法可知,四边形OABC为矩形,其中OA=2 cm,OC=4 cm,所以四边形OABC的面积S=2×4=8(cm2).
答案:矩形 8
9.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.
解:(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.
(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O的作法作出上底面⊙O′.
(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.
(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.
10.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.
解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;
在y轴上取OB=2O′B′=2 cm;
在过点B的x轴的平行线上取
BC=B′C′=1 cm.
连接O,A,B,C各点,即得到了原图形.
由作法可知,OABC为平行四边形,
OC===3 cm,
∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×2=2 cm2.
层级二 应试能力达标
1.如图是水平放置的三角形的直观图,A′B′∥y′轴,则原图中△ABC是(  )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
解析:选B 因为A′B′∥O′y′,所以由斜二测画法可知在原图形中BA⊥AC,故△ABC是直角三角形.故选B.
2.用斜二测画法画出的某平面图形的直观图如图所示,AB边平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 cm2,则原平面
图形A′B′C′D′的面积为(  )
A.4 cm2       B.4 cm2
C.8 cm2 D.8 cm2
解析:选C 依题意,可知∠BAD=45°,则原平面图形A′B′C′D′为直角梯形,上、下底边分别为B′C′,A′D′,且长度分别与BC,AD相等,高为A′B′,且长度为梯形ABCD的高的2倍,所以原平面图形的面积为8 cm2.
3.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于(  )
A.+ B.1+
C.1+ D.2+
解析:选D 平面图形是上底长为1,下底长为1+,高为2的直角梯形.计算得面积为2+.
4.水平放置的△ABC的斜二测直观图如图所示,已知B′C′=4,A′C′=3,B′C′∥y′轴,则△ABC中AB边上的中线的长度为(  )
A. B.
C.5 D.
解析:选A 由斜二测画法规则知AC⊥BC,即△ABC为直角三角形,其中AC=3,BC=8,所以AB=,AB边上的中线长度为.故选A.
5.有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为________ cm2.
解析:该矩形的面积为S=5×4=20(cm2),由平面图形的面积与直观图的面积间的关系,可得直观图的面积为S′=S=5(cm2).
答案:5
6.如图所示,△A′O′B′表示水平放置的△AOB的直观图,点B′在x′轴上,A′O′与x′轴垂直,且A′O′=2,则△AOB的边OB上的高为________.
解析:设△AOB的边OB上的高为h,由直观图中边O′B′与原图形中边OB的长度相等,及S原图=2S直观图,得OB×h=2××A′O′×O′B′,则h=4.故△AOB的边OB上的高为4.
答案:4
7.如图所示,四边形ABCD是一个梯形,CD∥AB,CD=AO=1,△AOD为等腰直角三角形,O为AB的中点,试画出梯形ABCD水平放置的直观图,并求直观图的面积.
解:在梯形ABCD中,AB=2,高OD=1.由于梯形ABCD水平放置的直观图仍为梯形,且上底CD和下底AB的长度都不变.如图所示,
在直观图中,O′D′=OD,
梯形的高D′E′=,于是,梯形A′B′C′D′的面积S=×(1+2)×=.
8.已知某几何体的三视图如下,请画出它的直观图(单位:cm).
解:画法:
(1)建系:如图①,画x轴,y轴,z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.
(2)画底:在x轴上取线段OB=8 cm,在y轴上取线段OA′=2 cm,以OB和OA′为邻边作平行四边形OBB′A′.
(3)定点:在z轴上取线段OC=4 cm,过C分别作x轴,y轴的平行线,并在平行线上分别截取CD=4 cm,CC′=2 cm.以CD和CC′为邻边作平行四边形CDD′C′.
(4)成图:连接A′C′,BD,B′D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该几何体的直观图(如图②).

 
1.2.3 空间几何体的直观图
预习课本P16~18,思考并完成以下问题
1.画简单几何体的直观图的步骤是什么?



2.水平放置的平面图形的直观图的斜二测画法有哪些规则?



3.用斜二测画法画空间几何体的直观图的步骤是什么?



1.用斜二测画法画平面图形的直观图的步骤
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴, 两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.
(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半.
2.用斜二测画法画空间几何体的直观图的步骤
(1)画底面,这时使用平面图形的斜二测画法即可.
(2)画z′轴,z′轴过点O′,且与x′轴的夹角为90°,并画出高线(与原图高线相等,画正棱柱时只需要画侧棱即可),连线成图.
(3)擦去辅助线,被遮线用虚线表示.
[点睛] (1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.
(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°(  )
(2)用斜二测画法画平面图形的直观图时,平行的线段在直观图中仍平行,且长度不变(  )
答案:(1)× (2)×
2.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的(  )
解析:选A 由直观图知,原四边形一组对边平行且不相等,为梯形,且梯形两腰不能与底垂直.
3.已知△ABC的直观图如图所示,则原△ABC的面积为________.
解析:由题意,易知在△ABC中,AC⊥AB,且AC=6,AB=3.
∴S△ABC=×6×3=9.
答案:9
水平放置的平面图形的直观图
[典例] 画水平放置的直角梯形的直观图,如图所示.
[解] (1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.画相应的x′轴和y′轴,使∠x′O′y′=45°,如图①②所示.
(2)在x′轴上截取O′B′=OB,在y′轴上截取O′D′=OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.
(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.
在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.     
 [活学活用]
 画一个锐角为45°的平行四边形的直观图(尺寸自定).
解:(1)画轴.如图①,建立平面直角坐标系xOy,再建立坐标系x′O′y′,其中∠x′O′y′=45°.
(2)描点.如图②,在x′轴上截取O′A′=OA,O′B′=OB,在y轴上截取O′D′=OD,过点D′作D′C′∥x′轴,且D′C′=DC.
(3)连线.连接B′C′,A′D′.
(4)成图.如图③,四边形A′B′C′D′即为一个锐角为45°的平行四边形ABCD的直观图.
空间几何体的直观图
[典例] 画出一个上、下底面边长分别为1,2,高为2的正三棱台的直观图.
[解] (1)画轴.如图,画x轴、y轴、z轴相交于点O,使∠xOy=45°,∠xOz=90°.
(2)画下底面.以O为线段中点,在x轴上取线段AB,使AB=2,在y轴上取线段OC,使OC=.连接BC,CA,则△ABC为正三棱台的下底面的直观图.
(3)画上底面.在z轴上取OO′,使OO′=2,过点O′作O′x′∥Ox,O′y′∥Oy,建立坐标系x′O′y′.在x′O′y′中,类似步骤(2)的画
法得上底面的直观图△A′B′C′.
(4)连线成图.连接AA′,BB′,CC′,去掉辅助线,将被遮住的部分画成虚线,则三棱台ABC-A′B′C′即为要求画的正三棱台的直观图.
画空间图形的直观图的原则
(1)首先在原几何体上建立空间直角坐标系Oxyz,并且把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面,再作z′轴与平面x′O′y′垂直.
(2)作空间图形的直观图时平行于x轴的线段画成平行于x′轴的线段并且长度不变.
(3)平行于y轴的线段画成平行于y′轴的线段,且线段长度画成原来的一半.
(4)平行于z轴的线段画成平行于z′轴的线段并且长度不变.     
 [活学活用]
 如图是一个几何体的三视图,用斜二测画法画出它的直观图.
解:(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.
(2)画底面.由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥,利用斜二测画法画出底面ABCD,在z轴上截取OO′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出上底面A′B′C′D′.
(3)画正四棱锥顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.
(4)成图.连接PA′,PB′,PC′,PD′,A′A,B′B,C′C,D′D,整理得到三视图表示的几何体的直观图,如图②.
直观图的还原与计算
[典例] 如图是四边形ABCD的水平放置的直观图A′B′C′D′,则原四边形ABCD的面积是(  )
A.14    B.10
C.28 D.14
[解析] ∵A′D′∥y′轴,A′B′∥C′D′,A′B′≠C′D′,
∴原图形是一个直角梯形.
又A′D′=4,
∴原直角梯形的上、下底及高分别是2,5,8,故其面积为S=×(2+5)×8=28.
[答案] C
平面多边形与其直观图面积间关系:
一个平面多边形的面积为S原,斜二测画法得到的直观图的面积为S直,则有S直=S原.      
[活学活用]
 已知△ABC是正三角形,且它的边长为a,那么△ABC的平面直观图△A′B′C′的面积为(  )
A.a2 B.a2
C.a2 D.a2
解析:选D 如图①,建立如图所示的平面直角坐标系xOy.
如图②,建立坐标系x′O′y′,使∠x′O′y′=45°,由直观图画法知:A′B′=AB=a,O′C′=OC=a,过C′作C′D′⊥O′x′于D′,则C′D′=O′C′=a.所以△A′B′C′的面积是S=·A′B′·C′D′=·a·a=a2.
层级一 学业水平达标
1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为(  )
A.90°,90°       B.45°,90°
C.135°,90° D.45°或135°,90°
解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.
2.若把一个高为10 cm的圆柱的底面画在x′O′y′平面上,则圆柱的高应画成(  )
A.平行于z′轴且大小为10 cm
B.平行于z′轴且大小为5 cm
C.与z′轴成45°且大小为10 cm
D.与z′轴成45°且大小为5 cm
解析:选A 平行于z轴(或在z轴上)的线段,在直观图中的方向和长度都与原来保持一致.
3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的(  )
解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.
4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中(  )
A.最长的是AB,最短的是AC
B.最长的是AC,最短的是AB
C.最长的是AB,最短的是AD
D.最长的是AD,最短的是AC
解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.
5.水平放置的△ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形A′B′C′,则△ABC是(  )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.任意三角形
解析:选C 将△A′B′C′还原,由斜二测画法知,△ABC为钝角三角形.
6.水平放置的正方形ABCO如图所示,在平面直角坐标系xOy中,点B的坐标为(4,4),则由斜二测画法画出的该正方形的直观图中,顶点B′到x′轴的距离为________.
解析:由斜二测画法画出的直观图如图所示,作B′E⊥x′轴于点E,在Rt△B′EC′中,B′C′=2,∠B′C′E=45°,所以B′E=B′C′sin 45°=2×=.
答案:
7.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=3,B′C′∥x′轴,则原平面图形的面积为________.
解析:在直观图中,设B′C′与y′轴的交点为D′,则易得O′D′=3,所以原平面图形为一边长为6,高为6的平行四边形,所以其面积为6×6=36.
答案:36
8.在直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在坐标系xOy中原四边形OABC为________(填形状),面积为________cm2.
解析:由题意,结合斜二测画法可知,四边形OABC为矩形,其中OA=2 cm,OC=4 cm,所以四边形OABC的面积S=2×4=8(cm2).
答案:矩形 8
9.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.
解:(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.
(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O的作法作出上底面⊙O′.
(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.
(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.
10.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.
解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;
在y轴上取OB=2O′B′=2 cm;
在过点B的x轴的平行线上取
BC=B′C′=1 cm.
连接O,A,B,C各点,即得到了原图形.
由作法可知,OABC为平行四边形,
OC===3 cm,
∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×2=2 cm2.
层级二 应试能力达标
1.如图是水平放置的三角形的直观图,A′B′∥y′轴,则原图中△ABC是(  )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
解析:选B 因为A′B′∥O′y′,所以由斜二测画法可知在原图形中BA⊥AC,故△ABC是直角三角形.故选B.
2.用斜二测画法画出的某平面图形的直观图如图所示,AB边平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 cm2,则原平面图形A′B′C′D′的面积为(  )
A.4 cm2       B.4 cm2
C.8 cm2 D.8 cm2
解析:选C 依题意,可知∠BAD=45°,则原平面图形A′B′C′D′为直角梯形,上、下底边分别为B′C′,A′D′,且长度分别与BC,AD相等,高为A′B′,且长度为梯形ABCD的高的2倍,所以原平面图形的面积为8 cm2.
3.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于(  )
A.+ B.1+
C.1+ D.2+
解析:选D 平面图形是上底长为1,下底长为1+,高为2的直角梯形.计算得面积为2+.
4.水平放置的△ABC的斜二测直观图如图所示,已知B′C′=4,A′C′=3,B′C′∥y′轴,则△ABC中AB边上的中线的长度为(  )
A. B.
C.5 D.
解析:选A 由斜二测画法规则知AC⊥BC,即△ABC为直角三角形,其中AC=3,BC=8,所以AB=,AB边上的中线长度为.故选A.
5.有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为________ cm2.
解析:该矩形的面积为S=5×4=20(cm2),由平面图形的面积与直观图的面积间的关系,可得直观图的面积为S′=S=5(cm2).
答案:5
6.如图所示,△A′O′B′表示水平放置的△AOB的直观图,点B′在x′轴上,A′O′与x′轴垂直,且A′O′=2,则△AOB的边OB上的高为________.
解析:设△AOB的边OB上的高为h,由直观图中边O′B′与原图形中边OB的长度相等,及S原图=2S直观图,得OB×h=2××A′O′×O′B′,则h=4.故△AOB的边OB上的高为4.
答案:4
7.如图所示,四边形ABCD是一个梯形,CD∥AB,CD=AO=1,△AOD为等腰直角三角形,O为AB的中点,试画出梯形ABCD水平放置的直观图,并求直观图的面积.
解:在梯形ABCD中,AB=2,高OD=1.由于梯形ABCD水平放置的直观图仍为梯形,且上底CD和下底AB的长度都不变.如图所示,
在直观图中,O′D′=OD,
梯形的高D′E′=,于是,梯形A′B′C′D′的面积S=×(1+2)×=.
8.已知某几何体的三视图如下,请画出它的直观图(单位:cm).
解:画法:
(1)建系:如图①,画x轴,y轴,z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.
(2)画底:在x轴上取线段OB=8 cm,在y轴上取线段OA′=2 cm,以OB和OA′为邻边作平行四边形OBB′A′.
(3)定点:在z轴上取线段OC=4 cm,过C分别作x轴,y轴的平行线,并在平行线上分别截取CD=4 cm,CC′=2 cm.以CD和CC′为邻边作平行四边形CDD′C′.
(4)成图:连接A′C′,BD,B′D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该几何体的直观图(如图②).