选修3-5 1.3科学探究——一维弹性碰撞 同步练习

文档属性

名称 选修3-5 1.3科学探究——一维弹性碰撞 同步练习
格式 zip
文件大小 1.2MB
资源类型 试卷
版本资源 鲁科版
科目 物理
更新时间 2019-04-22 10:49:44

图片预览

文档简介

1.3科学探究——一维弹性碰撞 同步练习
考点1:基础知识点的考查
1.(多选)下面关于碰撞的理解正确的是(  )
A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程
B.在碰撞现象中,一般内力都远远大于外力,所以可以认为碰撞时系统的总动量守恒
C.如果碰撞过程中机械能也守恒,这样的碰撞叫做非弹性碰撞
D.微观粒子的碰撞由于不发生直接接触,所以不满足动量守恒的条件,不能应用动量守恒定律求解
2.现有甲、乙两滑块,质量分别为3m和m,以相同的速度v在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是(  )
A.弹性碰撞
B.非弹性碰撞
C.完全非弹性碰撞
D.条件不足,无法确定
3.(多选)在两个物体碰撞前后,下列说法中可以成立的是(  )
A.作用后的总机械能比作用前小,但总动量守恒
B.作用前后总动量均为零,但总动能守恒
C.作用前后总动能为零,而总动量不为零
D.作用前后总动量守恒,而系统内各物体的动量增量的总和不为零
4.如图所示,三个质量相同的滑块A、B、C,间隔相等地静置于同一水平直轨道上.现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后A、B分别以v0、v0的速度向右运动,B再与C发生碰撞,碰后B、C粘在一起向右运动.滑块A、B与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求B、C碰后瞬间共同速度的大小.
考点2:模型的理解与应用
5. A、B两球在光滑水平面上沿同一直线、同一方向运动,mA=1 kg,mB=2 kg,vA=6 m/s,vB=2 m/s.当A追上B并发生碰撞后,A、B两球速度的可能值是(  )
A.vA′=5 m/s,vB′=2.5 m/s
B.vA′=2 m/s,vB′=4 m/s
C.vA′=-4 m/s,vB′=7 m/s
D.vA′=7 m/s,vB′=1.5 m/s
6.(多选)小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L.质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开始时AB与C都处于静止状态,如图所示.当突然烧断细绳,弹簧被释放,使木块C向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是(  )
A.如果AB车内表面光滑,整个系统任何时刻机械能都守恒
B.当木块对地运动速度为v时,小车对地运动速度为v
C.整个系统最后静止
D.木块的位移一定大于小车的位移
7. 质量为M的小车静止于光滑的水平面上,小车的上表面和圆弧的轨道均光滑,如图所示,一个质量为m的小球以速度v0水平冲上小车,当小球返回左端脱离小车时,下列说法错误的是(  )
A.小球一定沿水平方向向左做平抛运动
B.小球可能沿水平方向向左做平抛运动
C.小球可能沿水平方向向右做平抛运动
D.小球可能做自由落体运动
8.质量为ma=1 kg,mb=2 kg的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移-时间图象如图所示,则可知碰撞属于(  )
A.弹性碰撞     
B.非弹性碰撞
C.完全非弹性碰撞
D.条件不足,不能判断
9.如图所示,光滑水平面上P物体与一个连着弹簧的Q物体正碰,正碰后P物体静止,Q物体以P物体碰前的速度v离开.已知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被压缩至最短时,下列说法正确的是(  )
A.P的速度恰好为零
B.P与Q具有相同的速度
C.Q刚开始运动
D.Q的速度等于v
10.在高速公路上发生了一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一质量为3 000 kg向北行驶的卡车,碰后两辆车挂接在一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰前的行驶速率(  )
A.小于10 m/s
B.大于20 m/s,小于30 m/s
C.大于10 m/s,小于20 m/s
D.大于30 m/s,小于40 m/s
11.(多选)如图所示,在质量为M的小车中挂着一单摆,摆球质量为m0,小车和单摆以恒定的速度v沿光滑水平地面运动,与位于正前方的质量为m的静止的木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列情况可能发生的是(  )
A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,
满足(M+m0)v=Mv1+mv1+m0v3
B.摆球的速度不变,小车和木块的速度变为v1和v2,满足Mv=Mv1+mv2
C.摆球的速度不变,小车和木块的速度都变为u,满足Mv=(M+m)u
D.碰撞时间极短,在此碰撞过程中,摆球的速度还来不及变化
12.质量为m的小球A,沿光滑水平面以速度v0与质量为2m的静止小球B发生正碰,碰撞后,小球A的动能变为原来的,那么小球B的速度可能是______ 或________.
13.质量为m1、m2的滑块分别以速度v1和v2沿斜面匀速下滑,斜面足够长,如图所示,已知v2>v1,有一轻弹簧固定在m2上,求弹簧被压缩至最短时m1的速度多大?
14.如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹击中,子弹嵌在其中,已知A的质量是B的质量的,子弹的质量是B的质量的.求:
(1)A物体获得的最大速度.
(2)弹簧压缩量最大时B物体的速度.
考点3:动量的综合运用
15.(多选)甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是5 kg·m/s和7 kg·m/s,甲追上乙并发生碰撞,碰撞后乙球的动量变为10 kg·m/s,则两球质量m甲与m乙的关系可能是(  )
A.m乙=2m甲
B.m乙=3m甲
C.m乙=4m甲
D.m乙=5m甲
16.两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量4 kg的物块C静止在前方,如图所示.B与C碰撞后二者会粘在一起运动.则在以后的运动中:
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
17.如图所示,质量为3m的木板静止在光滑的水平面上,一个质量为2m的物块(可视为质点),静止在木板上的A端,已知物块与木板间的动摩擦因数为μ.现有一质量为m的子弹(可视为质点)以初速度v0水平向右射入物块并穿出,已知子弹穿出物块时的速度为,子弹穿过物块的时间极短,不计空气阻力,重力加速度为g.求:
(1)子弹穿出物块时,物块的速度大小;
(2)子弹穿出物块后,为了保证物块不从木板的B端滑出,木板的长度至少多大?
18.如图所示,水平地面上有两个静止的小物块a和b,其连线与墙垂直;a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m.两物块与地面间的动摩擦因数均相同.现使a以初速度v0向右滑动.此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g.求物块与地面间的动摩擦因数满足的条件.
19.(2018全国Ⅰ卷理综第24题)一质量为m的烟花弹获得动能E后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量,求
(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;
(2)爆炸后烟花弹向上运动的部分距地面的最大高度
20.(2017天津理综第10题)如图所示,物块A和B通过一根轻质不可伸长的细绳相连,跨放在质量不计的光滑定滑轮两侧,质量分别为mA=2 kg、mB=1 kg。初始时A静止于水平地面上,B悬于空中。现将B竖直向上再举高h=1.8 m(未触及滑轮),然后由静止释放。一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。取g=10 m/s2,空气阻力不计。求:
(1)B从释放到细绳刚绷直时的运动时间t;
(2)A的最大速度v的大小;
(3)初始时B离地面的高度H。
1.3科学探究——一维弹性碰撞 同步练习
参考答案
1.
【答案】 AB
【解析】碰撞过程中机械能守恒的碰撞为弹性碰撞,C错;动量守恒定律是自然界普遍适用的规律之一.不仅低速、宏观物体的运动遵守这一规律,而且高速、微观物体的运动也遵守这一规律,D错.
2.
【答案】A
【解析】 由动量守恒有3m·v-mv=0+mv′所以v′=2v,碰前总动能:Ek=·3m·v2+mv2=2mv2,碰后总动能:Ek′=mv′2=2mv2,Ek=Ek′,所以A对.
3.
【答案】 AB
【解析】选项A是非弹性碰撞,成立;选项B是弹性碰撞,成立;选项C不成立,因为总动能为零其总动量一定为零;选项D,总动量守恒则系统所受合外力一定为零,若系统内各物体的动量增量总和不为零的话,则系统一定受到外力的作用,D不成立.
4.
【答案】v0
【解析】设滑块质量为m,A与B碰撞前A的速度为vA,由题意知,碰撞后A的速度v′A=v0,B的速度vB=v0,由动量守恒定律得
mvA=mv′A+mvB①
设碰撞前A克服轨道阻力所做的功为WA,由功能关系得WA=mv-mv②
设B与C碰撞前B的速度为v′B,B克服轨道阻力所做的功为WB,由功能关系得
WB=mv-mv′③
据题意可知WA=WB④
设B、C碰撞后瞬间共同速度的大小为v,由动量守恒定律得
mv′B=2mv⑤
联立①②③④⑤式,代入数据得
v=v0.⑥
5.
【答案】B
【解析】虽然题中四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度vA′大于B的速度vB′,不符合实际,即A、D项均错误;C项中,两球碰后的总动能为Ek后=mAvA′2+mBvB′2=57 J,大于碰前的总动能Ek前=22 J,违背了能量守恒,所以C项错;而B项既符合实际情况,也不违背能量守恒,所以B项对.
6.
【答案】 BC
【解析】 因水平地面光滑,小车、木块、弹簧组成的系统动量守恒,有mv1=Mv2,ms1=Ms2,因不知m、M的大小关系,故无法比较s1、s2的大小关系,但当木块C与B端碰撞后,系统总动量为零,整体又处于静止状态,故B、C均正确,D错误;因木块C与B端的碰撞为完全非弹性碰撞,机械能损失最大,故A错误.
7.
【答案】A
【解析】小球水平冲上小车,又返回左端,到离开小车的整个过程中,系统水平方向动量守恒,机械能守恒,相当于小球与小车发生弹性碰撞的过程,如果mM,小球离开小车向右做平抛运动,所以B、C、D正确.A错误.
8.
【答案】 A
【解析】 由x-t图象知,碰撞前va=3 m/s,vb=0,碰撞后va′=-1 m/s,vb′=2 m/s,碰撞前动能为mav+mbv= J,碰撞后动能为mava′2+mbvb′2= J,故动能守恒,碰撞前动量mava+mbvb=3 kg·m/s,碰撞后动量mava′+mbvb′=3 kg·m/s,故动量守恒,所以碰撞属于弹性碰撞.
9.
【答案】 B
【解析】 P物体接触弹簧后,在弹簧弹力的作用下,P做减速运动,Q做加速运动,P、Q间的距离减小,当P、Q两物体速度相等时,弹簧被压缩到最短,所以B正确,A、C错误;由于作用过程中动量守恒,设速度相等时速度为v′,则mv=(m+m)v′,所以弹簧被压缩至最短时,P、Q的速度v′=,故D错误.
10.
【答案】 A
【解析】 两车相撞后接在一起并向南滑行,选向南为正方向,由动量守恒定律,得m1v1-m2v2=(m1+m2)v
因v>0,故m1v1>m2v2
卡车碰前的速率v2<=m/s=10 m/s,故应选A.
11.
【答案】 BCD
【解析】 小车与木块碰撞,且碰撞时间极短,因此相互作用只发生在木块和小车之间,悬挂的摆球在水平方向未受到力的作用,故摆球在水平方向的动量未发生变化,即摆球的速度在小车与木块碰撞过程中始终不变,由此可知A情况不可能发生;选项B的说法对应于小车和木块碰撞后又分开的情况,选项C的说法对应于小车和木块碰撞后粘在一起的情况,两种情况都有可能发生.故B、C、D均正确.
12.
【答案】 v0 v0
【解析】 要注意的是,两球的碰撞不一定是弹性碰撞.小球A碰后动能变为原来的,则其速度大小仅为原来的.两球在光滑水平面上正碰,碰后小球A的运动有两种可能,继续沿原方向运动或被反弹.
当以小球A原来的速度方向为正方向时,则
vA′=±v0
根据两球碰撞前后的总动量守恒得
mv0+0=m×+2mvB′
mv0+0=m×+2mvB″
解得vB′=v0,vB″=v0.
13.
【答案】 
【解析】 两滑块匀速下滑所受合外力为零,相互作用时合外力仍为零,动量守恒.当弹簧被压缩时,m1加速,m2减速,当压缩至最短时,m1、m2速度相等.
设速度相等时为v,则有
m1v1+m2v2=(m1+m2)v
解得弹簧被压缩至最短时的速度
v=.
14.
【答案】(1) (2)
【解析】设子弹的质量为m,则mB=4m,mA=3m.
(1)对子弹进入A的过程,由动量守恒得
mv0=(m+mA)v1
解得它们的共同速度,也是A的最大速度
v1==.
(2)以子弹、A、B及弹簧组成的系统为研究对象,整个过程总动量守恒,当弹簧具有最大压缩量时,它们的速度相等,由动量守恒定律得
mv0=(m+mA+mB)v2,
解得三者的共同速度,即弹簧有最大压缩量时B的速度
v2==.
15.
【答案】 BCD
【解析】 碰撞前,v甲>v乙,即>,可得:m乙>1.4m甲.
碰撞后v甲′≤v乙′,即≤
可得:m乙≤5m甲.
要求碰撞过程中动能不增加,
则有:+≥+,
可解得:m乙≥m甲, 故m甲和m乙的关系可能正确是B、C、D.
16.
【答案】 (1)3 m/s (2)12 J
【解析】 (1)当A、B、C三者的速度相等时弹簧的弹性势能最大.由A、B、C三者组成的系统动量守恒有
(mA+mB)v=(mA+mB+mC)·vABC,
解得vABC= m/s=3 m/s.
(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为vBC,
则mBv=(mB+mC)vBC,vBC= m/s=2 m/s,
设物块A、B、C速度相同时弹簧的弹性势能最大为Ep,根据能量守恒
Ep=(mB+mC)v+mAv2-(mA+mB+mC)v=12 J.
17.
【答案】 (1) (2)
【解析】 (1)设子弹穿过物块时物块的速度为v1,对子弹和物块组成的系统,由动量守恒定律得:
mv0=m+2mv1
解得v1=.
(2)物块和木板达到的共同速度为v2时,物块刚好到达木板右端,这样板的长度最小为L,对物块和木板组成的系统,由动量守恒得:
2mv1=5mv2
此过程系统摩擦生热:Q=2μmgL
由能量守恒定律得:2μmgL=·2mv-·5mv
代入数据解得:L=.
18.
【答案】 ≤μ<
【解析】 设物块与地面间的动摩擦因数为μ.若要物块a、b能够发生碰撞,应有
mv>μmgl①
即μ<②
设在a、b发生弹性碰撞前的瞬间,a的速度大小为v1.由能量守恒有
mv=mv+μmgl③
设在a、b碰撞后的瞬间,a、b的速度大小分别为v1′、v2′,由动量守恒和能量守恒有
mv1=mv1′+mv2′④
mv=mv′+v′⑤
联立④⑤式解得v2′=v1⑥
由题意知,b没有与墙发生碰撞,由功能关系可知
v′≤μmgl⑦
联立③⑥⑦式,可得
μ≥⑧
联立②⑧式,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件
≤μ<.⑨
19.
【答案】(1);(2)
(1)设烟花弹上升的初速度为v0,由题给条件有

设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有

联立①②式得

(2)设爆炸时烟花弹距地面的高度为h1,由机械能守恒定律有
E=mgh1④
火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为v1和v2。由题给条件和动量守恒定律有


由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。设爆炸后烟花弹上部分继续上升的高度为h2,由机械能守恒定律有

联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为

20.
【答案】 (1)0.6 s (2)2 m/s (3)0.6 m
【解析】 本题考查自由落体运动、机械能守恒定律及动量守恒定律。
(1)B从释放到细绳刚绷直前做自由落体运动,有
h=gt2①
代入数据解得
t=0.6 s②
(2)设细绳绷直前瞬间B速度大小为vB,有
vB=gt③
细绳绷直瞬间,细绳张力远大于A、B的重力,A、B相互作用,由动量守恒得
mBvB=(mA+mB)v④
之后A做匀减速运动,所以细绳绷直后瞬间的速度v即最大速度,联立②③④式,代入数据解得
v=2 m/s ⑤
(3)细绳绷直后,A、B一起运动,B恰好可以和地面接触,说明此时A、B的速度为零,这一过程中A、B组成的系统机械能守恒,有
(mA+mB)v2+mBgH=mAgH⑥
代入数据解得
H=0.6 m ⑦