(浙教版)备考2019中考数学高频考点剖析专题4 代数之方程(组)问题

文档属性

名称 (浙教版)备考2019中考数学高频考点剖析专题4 代数之方程(组)问题
格式 zip
文件大小 2.4MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-04-22 19:22:00

文档简介

备考2019中考数学高频考点剖析
专题四 代数之方程(组)问题
考点扫描☆聚焦中考
方程和方程组问题,是历年中考的必考内容之一,考查的知识点包括一元一次方程、二元一次方程组、分式方程及其一元二次方程四个方面,总体来看,难度系数低,整式方程以选择填空为主,分式方程以计算为主,综合不等式进行考查,解析题也是重点考查内容。也有少量的解析题。解析题主要以二元一次方程和其它方程的综合为主。结合2017、2018年全国各地中考典例及其浙教版2019年中考模拟试题,我们从四方面进行方程与方程组问题的探讨:
(1)一元一次方程;
(2)二元一次方程组;
(3)分式方程.
(4)一元二次方程
考点剖析☆典型例题
例1某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是(  )
A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x
例2两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程(  )
A.5000(1﹣x﹣2x)=2400 B.5000(1﹣x)2=2400
C.5000﹣x﹣2x=2400 D.5000(1﹣x)(1﹣2x)=2400
例3某市火车站北广场将于2016年底投入使用,计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600 棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
例4(2018·辽宁省盘锦市)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.
(1)求第一批悠悠球每套的进价是多少元;
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
例5(2018·辽宁省抚顺市)(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
考点过关☆专项突破
类型一 一元一次方程
1. 某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是(  )
A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x
2. 下图是“沃尔玛”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为(?? )
?
A. 22元 B.?23元 ?C.?24元???? D.?26元
3. 某商贩同时卖出2件大衣,每件以240元成交,按成本价计算,其中一件盈利20%,另一件亏本20%,则这笔生意对于商贩来说是( ???)
A.?不赔不赚? ?B.?赔20元?? C.?赚20元? D.?赔10元
4. 平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元。
(1)甲种商品每件进价为________元,乙种商品每件利润率为________。
(2)若该商场同时购进甲、乙两种商品50件,恰好总进价为2100元,求购进甲种商品多少件?
(3)在“端午”期间,该商场对甲、乙两种商品进行如下的优惠促销活动。
打折前一次性购物总金额
优惠措施
少于等于450元
不优惠
超过450元,但不超过600元
按售价打九折
超过600元
其中600元部分八点二折优惠
超过600元的部分三折优惠
按上述优惠条件,小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?
5. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少名学生?
6. 如图是学习一元一次方程应用时,老师出示的问题和两名同学所列的方程,根据图中信息,解答下列问题。
(1)小杰同学所列方程中的x表示________,小婷同学所列方程中的y表示________;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题。
7. 如图A在数轴上所对应的数为﹣2。
(1)点B在点A右边距A点4个单位长度,求点B所对应的数;
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离。
(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度。
8. 已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.

(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
类型二 二元一次方程组
1. 若xm﹣n﹣2ym+n﹣2=2018.是关于x,y的二元一次方程,则m,n的值分别是(  )
A.m=1,n=0 B.m=0,n=1 C.m=2,n=1 D.m=2,n=3
2.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有(  )个.
A.2 B.4 C.8 D.12
3.(2018·山东泰安·3分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为(  )
A. B.
C. D.
4. 运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?(  )
A.720 B.860 C.1100 D.580
5. (2018·广东广州·3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y辆,根据题意得(??? )
A. B. C. D.
6. 甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?
7. 用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?

8. 某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.
(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?
(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的 少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?
9 . 商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
?销售时段
?销售数量
?销售收入
?A种型号
?B种型号
?第一周
?3台
?4台
?1200元
?第二周
?5台
?6台
?1900元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
10. 表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.

(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?
(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.
类型三 分式方程
1.(2018?株洲)关于x的分式方程解为x=4,则常数a的值为(  )
A.a=1 B.a=2 C.a=4 D.a=10
2.(2018·云南省昆明·4分)甲、乙两船从相距300km的A.B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为(  )
A.= B.= C.= D.=
3.一艘轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米?设A港和B港相距x千米.根据题意,可得到的方程是________。
4. (2018·浙江舟山·4分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列出方程:________。
5. (2018?黄石)分式方程=1的解为 .
6. (2017·浙江省绍兴市·4分))解分式方程: +=4.
7. 某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?
8. (2018?宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
类型四 一元二次方程
1. (2018·广西梧州·6分)解方程:2x2﹣4x﹣30=0.
2. 某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是(  )
A.2(1+x)2=2.88 B.2x2=2.88 C.2(1+x%)2=2.88 D.2(1+x)+2(1+x)2=2.88
3. 10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(  )
A.9人 B.10人 C.11人 D.12人
4. 2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为   .
5. (2018·内江)已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为____.
6. 学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.
购买件数
销售价格
不超过30件
单价40元
超过30件
每多买1件,购买的所有物品单价降低0.5元,但单价不得低于30元
类型五 方程与方程组及其它方程的综合应用
1. (2018?乐山?10分)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
2. 商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加   件,每件商品,盈利   元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
3. (2018?宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
4. (2018?遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克)

34.8
32
29.6
28

售价x(元/千克)

22.6
24
25.2
26

(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

备考2019中考数学高频考点剖析
专题四 代数之方程(组)问题
考点扫描☆聚焦中考
方程和方程组问题,是历年中考的必考内容之一,考查的知识点包括一元一次方程、二元一次方程组、分式方程及其一元二次方程四个方面,总体来看,难度系数低,整式方程以选择填空为主,分式方程以计算为主,综合不等式进行考查,解析题也是重点考查内容。也有少量的解析题。解析题主要以二元一次方程和其它方程的综合为主。结合2017、2018年全国各地中考典例及其浙教版2019年中考模拟试题,我们从四方面进行方程与方程组问题的探讨:
(1)一元一次方程;
(2)二元一次方程组;
(3)分式方程.
(4)一元二次方程
考点剖析☆典型例题
例1某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是(  )
A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x
【考点】89:由实际问题抽象出一元一次方程.
【分析】根据题意,可以列出相应的方程,从而可以解答本题.
【解答】解:由题意可得,
12x×2=(42﹣x)×18,
故选C.
【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.
例2两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程(  )
A.5000(1﹣x﹣2x)=2400 B.5000(1﹣x)2=2400
C.5000﹣x﹣2x=2400 D.5000(1﹣x)(1﹣2x)=2400
【考点】AC:由实际问题抽象出一元二次方程.
【分析】若这种药品的第一年平均下降率为x,则第二年的年下降率为2x,根据两年前生产1吨某药品的成本是5000元,随着生产技术的进步,现在生产1吨药品的成本是2400元可列方程.
【解答】解:设这种药品的年平均下降率为x,则第二年的年下降率为2x,
根据题意得:5000(1﹣x)(1﹣2x)=2400.
故选D.
例3某市火车站北广场将于2016年底投入使用,计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600 棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
【分析】(1)根据在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600 棵可以列出相应的二元一次方程组,从而可以解答本题;
(2)根据安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,可以列出相应的二元一次方程组,从而可以解答本题.
【解答】解:(1)设A,B两种花木的数量分别是x棵、y棵,
,
解得,,
即A,B两种花木的数量分别是4200棵、2400棵;
(2)设安排种植A花木的m人,种植B花木的n人,
,
解得,,
即安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.
【点评】本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的二元一次方程组.
例4(2018·辽宁省盘锦市)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.
(1)求第一批悠悠球每套的进价是多少元;
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
【解答】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得: =1.5×,解得:x=25,经检验,x=25是原分式方程的解.
答:第一批悠悠球每套的进价是25元.
(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.
答:每套悠悠球的售价至少是35元.
例5(2018·辽宁省抚顺市)(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
根据题意得:﹣=3,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x=×40=60.
答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.
(2)设安排甲队工作m天,则安排乙队工作天,
根据题意得:7m+5×≤145,
解得:m≥10.
答:至少安排甲队工作10天.
【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
考点过关☆专项突破
类型一 一元一次方程
1. 某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是(  )
A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x
【考点】89:由实际问题抽象出一元一次方程.
【分析】根据题意,可以列出相应的方程,从而可以解答本题.
【解答】解:由题意可得,
12x×2=(42﹣x)×18,
故选C.
【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.
2. 下图是“沃尔玛”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为(?? )
?
A.?22元 B.?23元 C.?24元? D.?26元
【考点】一元一次方程的实际应用-销售问题
【分析】设原价为x元,根据原价×折扣数=实际售价列出方程,解得x的值即可。
【解析】【解答】设洗发水的原价为x元,根据题意,得0.8x=19.2, 解得 x=24 故答案为:C. 3. 某商贩同时卖出2件大衣,每件以240元成交,按成本价计算,其中一件盈利20%,另一件亏本20%,则这笔生意对于商贩来说是( ???)
A.?不赔不赚? B.?赔20元? C.?赚20元? ?D.?赔10元
【考点】一元一次方程的实际应用-盈亏问题
【分析】由题意先分别计算出两件大衣的成本价,再根据两件大衣的售价即可判断。
【解析】【解答】解:由题意可知,盈利20%的这件大衣的成本价=240÷(1+20%)=200元, 亏本20%的这件大衣的成本价=240÷(1-20%)=300元, ∵240×2-(200+300)=-20,
∴赔了20元。
故答案为:B
4. 平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元。
(1)甲种商品每件进价为________元,乙种商品每件利润率为________。
(2)若该商场同时购进甲、乙两种商品50件,恰好总进价为2100元,求购进甲种商品多少件?
(3)在“端午”期间,该商场对甲、乙两种商品进行如下的优惠促销活动。
打折前一次性购物总金额
优惠措施
少于等于450元
不优惠
超过450元,但不超过600元
按售价打九折
超过600元
其中600元部分八点二折优惠
超过600元的部分三折优惠
按上述优惠条件,小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?
【考点】一元一次方程的实际应用-销售问题
【解析】【分析】(1)根据甲商品的售价及利润率、乙商品的售价及进价,分别列式即可解答; (2)根据甲、乙两种商品的总件数及总进价,设未知数列方程即可解答; (3)根据小华的实际付款,结合优惠条件,分所购商品的价钱不超过600元和超过600元两种情况,设未知数分别列方程求解即可。
【答案】 (1)40;60%
(2)解:设购进甲种商品x件,则购进乙种商品(50-x)件,可列方程为:
40x+50(50-x)=2100
解得:x=40
答:购进甲种商品40件。
(3)解:设小华在该商场购进乙种商品x件,实际付款504>450,所以有两种情况:
①当80x≤600时,则: ?,解得:x=7.
②当80x>600时,则: ,
解得:x=8
答:小华在该商场购买乙种商品7件或8件。
5. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少名学生?
【考点】一元一次方程的其他应用
【解析】【分析】x名学生,每人3本,剩余20本,故总书数(3x+20)本;每人4本,缺25本,总书数也可表示为(4x-25),列出方程解答即可。
【答案】 解:设这个班有x名学生,由题意列方程,得
3x+20=4x-25
3x-4x=-25-20
-x=-45
x=45
答:这个班共有45名学生。
6. 如图是学习一元一次方程应用时,老师出示的问题和两名同学所列的方程,根据图中信息,解答下列问题。
(1)小杰同学所列方程中的x表示________,小婷同学所列方程中的y表示________;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题。
【考点】根据数量关系列出方程,一元一次方程的实际应用-销售问题
【解析】【分析】(1)根据小杰所列方程中3x、小婷所列方程中, 结合蓝布料每米3元即可解答;(2)根据小杰所列方程的右边是540、小婷所列方程的右边是138,结合买两种布料共138m、花了540元即可解答; (3)根据解一元一次方程的一般步骤,分步即可解答。
【答案】 (1)所买蓝布料的长度;买蓝布料的费用 (2)解:(小杰)买蓝布料的费用+买黑布料的费用=540元;(小婷)蓝布料的长度+黑布料的长度=138m. (3)解:选小杰的方程:解得:x=75
138-x=63
答:蓝布料买了75m,黑布料买了63m。
选小婷的方程:解得y=225
540-y=315
所以:225÷3=75(m)
315÷5=63(m)
答:蓝布料买了75m,黑布料买了63m。
7. 如图A在数轴上所对应的数为﹣2。
(1)点B在点A右边距A点4个单位长度,求点B所对应的数;
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离。
(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度。
【考点】数轴及有理数在数轴上的表示,一元一次方程的实际应用-行程问题
【解析】【分析】(1)根据点B与点A的位置和距离,列式解答即可;
(2)先由点A运动的距离和速度可得其运动的时间,从而可得A、B两点共运动的距离,结合(1)的结果列式解答即可;
【解答】 (1)解:﹣2+4=2.
故点B所对应的数是2.
(2)解:(-2+6)÷2=2(秒)
4+(2+2)×2=12.
故A,B两点间距离是12个单位长度.
(3)解:(多种方法,给出的是方程解法)①运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;
②运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.
故经过4秒或8秒后,A,B两点相距4个单位长度. (3)分B点在A点右边4个单位长度,B点在A点左边4个单位长度两种情况,设出运动时间结合运动速度和距离,即可列方程解答。
8. 已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.

(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
【考点】实数在数轴上的表示,一元一次方程的其他应用
【解析】【分析】(1)根据题意得出运动t秒时,P点和Q点所代表的的数字,如果两个数字相遇,则两个数P点和Q点表示的数相等,得到关于t的方程,解出值即可。 (2)P点晚1秒钟出发,求出D点运动的时间为(t+1),两个点相距一段距离可以考虑两种情况,相遇前和相遇后,进行解答即可。 (3)可以设点C表示的数为a,根据两点之间的距离进行求解即可得到。
【答案】 (1)解:∵经过t秒点P和点O相遇,
∴有 ,
解得 ,
∴ ,
∴点P和点Q相遇时的位置所对应的数为
(2)解:∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,
①若点P和点Q在相遇前相距1个单位长度,
则 ,
解得: ,
②若点P和点Q在相遇后相距1个单位长度,
则2t+1×(t+1) =4+1,
解得: ,
综合上述,当P出发 秒或 秒时,P和点Q相距1个单位长度
(3)解:若点P和点Q在相遇前相距1个单位长度,
此时满足条件的点C即为P点,所表示的数为 ;
若点P和点Q在相遇前相距1个单位长度,
此时满足条件的点C即为Q点,所表示的数为 .
类型二 二元一次方程组
1. 若xm﹣n﹣2ym+n﹣2=2018.是关于x,y的二元一次方程,则m,n的值分别是(  )
A.m=1,n=0 B.m=0,n=1 C.m=2,n=1 D.m=2,n=3
【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.
【解答】解:根据题意得,即,
解得:,
故选:C.
【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
2.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有(  )个.
A.2 B.4 C.8 D.12
【分析】设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据总价=单价×数量结合30个球的总价值为440元,即可得出关于x、y的二元一次方程,再由x、y均为正整数,即可求出结论.
【解答】解:设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,
根据题意得:30x+60y+10(30﹣x﹣y)=440,
∴x=7﹣y.
∵x、y为正整数,
∴y=2,x=2.
故选:A.
【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
3.(2018·山东泰安·3分)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为(  )
A. B.
C. D.
【分析】直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.
【解答】解:设A型风扇销售了x台,B型风扇销售了y台,
则根据题意列出方程组为:.
故选:C.
【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.
4. 运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?(  )
A.720 B.860 C.1100 D.580
【分析】设每节火车车厢能运输x吨化肥,每辆汽车能运输y吨化肥,根据“运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入10x+20y即可求出结论.
【解答】解:设每节火车车厢能运输x吨化肥,每辆汽车能运输y吨化肥,
根据题意得:,
解得:,
∴10x+20y=580.
故选:D.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
5. (2018·广东广州·3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y辆,根据题意得(??? )
A. B. C. D.
【分析】根据甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,由此得9x=11y;两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),由此得(10y+x)-(8x+y)=13,从而得出答案.
【解析】【解答】解:依题可得: , 故答案为:D.
6. 甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?
【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).
【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得
,
解得:.
答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.
【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
7. 用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?

【考点】二元一次方程组的应用.
【分析】设做第一种x个,第二种y个,根据共有1000张正方形纸板和2000张长方形纸板,列方程组求解.
【解答】解:设做第一种x个,第二种y个,
由题意得,,
解得:.
答:做第一种200个,第二种400个.
8. 某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.
(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?
(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的 少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?
【答案】 (1)设该型号的学生用电脑单价是x万元,教师用笔记本电脑单价是y万元。根据题意,得
解得
答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元。
(2)解:设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为( m-90)台,
依题意得:0.19m+0.3×( m-90)≤438,
解得m≤1860.
∵m为正整数,
∴m最大=1860
所以 m-90= ×1860-90=282(台).
答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.
【考点】二元一次方程组的其他应用,一元一次不等式的应用
【解析】【分析】(1)根据两个乡镇买卖两种型号的电脑的数量和费用列出方程组求解。 (2)根据两种型号的电脑的数量关系和总费用列出不等式组求解。
9 . 商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
?销售时段
?销售数量
?销售收入
?A种型号
?B种型号
?第一周
?3台
?4台
?1200元
?第二周
?5台
?6台
?1900元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
【考点】一元一次不等式的应用,二元一次方程组的实际应用-销售问题
【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解; (2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台,根据金额不多余7500元,列不等式求解; (3)根据A型号的风扇的进价和售价,B型号的风扇的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.
【解答】 (1)解:设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:
解得:
答:A、B两种型号电风扇的销售单价分别为200元、150元.
(2)解:设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.
依题意得:160a+120(30﹣a)≤7500,
解得:a≤.
答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.
(3)解:依题意有:
(200﹣160)a+(150﹣120)(50﹣a)>1850
解得:a>35,
∵a≤,且a应为整数
∴a=36,37
∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:
当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;
当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.
10. 表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.

(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?
(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.
【考点】二元一次方程的解,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)设买“指定日普通票”x张,“夜票”y张.,购买指定日普通票的花费为200x元,购买夜票的花费为100y元,根据 购买“指定日普通票”和“夜票”共10张, 和 购买“指定日普通票”和“夜票”共花费1600元列出方程组,求解即可; (2) 能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.根据购买三种票的总花费是1600元,列出二元一次方程,再求出其正整数解,进而根据而且每张票至少一张,即可得出答案。
【答案】 (1)解:设买“指定日普通票”x张,“夜票”y张.
由题意得: , 解得
∴“指定日普通票”买6张,“夜票”买4张.
(2)能,理由如下:
设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.
由题意得200x+160y+100(10-x-y)=1600.
整理得5x+3y=30,
∵x,y均为正整数,且每种至少一张,
∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.
类型三 分式方程
1.(2018?株洲)关于x的分式方程解为x=4,则常数a的值为(  )
A.a=1 B.a=2 C.a=4 D.a=10
【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a=﹣1.
【解答】解:把x=4代入方程,得
+=0,
解得a=10.
故选:D.
2.(2018·云南省昆明·4分)甲、乙两船从相距300km的A.B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为(  )
A.= B.=
C.= D.=
【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.
【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:
=.
故选:A.
【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.
3.一艘轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米?设A港和B港相距x千米.根据题意,可得到的方程是________。
【答案】
【考点】一元一次方程的实际应用-行程问题
【解析】【解答】设A港和B港相距x千米,根据题意,可列方程: ,
即:。
故答案为:
【分析】船在顺水中的速度=船速+水速,船在逆水中的速度=船速-水速。从A港顺流到B港所用时间为 , 从B港返回A港所用时间则为 , 根据逆流所花时间比顺流所花时间多3小时列出方程即可。
4. (2018·浙江舟山·4分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列出方程:________。
【考点】列分式方程
【分析】若设甲每小时检x个,则乙每小时检测(x-20)个,甲检测300个的时间为, 乙检测200个所用的时间为,根据题意可得出方程.
【解答】解:设甲每小时检x个,则乙每小时检测(x-20)个, 甲检测300个的时间为, 乙检测200个所用的时间为 由等量关系可得 故答案为 【分析】根据实际问题列方程,找出列方程的等量关系式:甲检测300个的时间=乙检测200个所用的时间×(1-10%),分别用未知数x表示出各自的时间即可
5. (2018?黄石)分式方程=1的解为 x=0.5 
【分析】方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
【解答】解:方程两边都乘以2(x2﹣1)得,
8x+2﹣5x﹣5=2x2﹣2,
解得x1=1,x2=0.5,
检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,
当x=1时,x﹣1=0,
所以x=0.5是方程的解,
故原分式方程的解是x=0.5.
故答案为:x=0.5
6. (2017·浙江省绍兴市·4分))解分式方程: +=4.
【考点】解分式方程.
【分析】观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.
【解答】解:方程两边同乘(x﹣1),
得:x﹣2=4(x﹣1),
整理得:﹣3x=﹣2,
解得:x=,
经检验x=是原方程的解,
故原方程的解为x=.
24.(2017·福建龙岩·6分)先化简再求值: ,其中x=2+.
【考点】分式的化简求值.
【分析】直接将括号里面进行通分运算,进而利用分式乘法运算法则求出答案.
【解答】解:原式=

=x+2,
当时,
原式=2++2=4+.
7. 某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?
【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,则用3120元购进A型芯片的数量是条,用4200元购进B型芯片的数量是条,根据用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.列出方程,求解并检验即可; (2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据购进A型芯片的钱数+购进A型芯片的钱数=6280,列出方程,求解即可。
【答案】(1)解:设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条, 根据题意得: = ,
解得:x=35, 经检验,x=35是原方程的解,
∴x﹣9=26.
答:A型芯片的单价为26元/条,B型芯片的单价为35元/条??? (2)解:设购买a条A型芯片,则购买(200﹣a)条B型芯片, 根据题意得:26a+35(200﹣a)=6280,
解得:a=80.
答:购买了80条A型芯片
8. (2018?宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;
(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.
【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
根据题意,得, =,
解得 x=40.
经检验,x=40是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
(2)甲乙两种商品的销售量为=50.
设甲种商品按原销售单价销售a件,则
(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,
解得 a≥20.
答:甲种商品按原销售单价至少销售20件.
类型四 一元二次方程
1. (2018·广西梧州·6分)解方程:2x2﹣4x﹣30=0.
【分析】利用因式分解法解方程即可;
【解答】解:∵2x2﹣4x﹣30=0,
∴x2﹣2x﹣15=0,
∴(x﹣5)(x+3)=0,
∴x1=5,x2=﹣3.
【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解一元二次方程的解法,属于中考基础题.
2. 某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是(  )
A.2(1+x)2=2.88 B.2x2=2.88 C.2(1+x%)2=2.88 D.2(1+x)+2(1+x)2=2.88
【分析】设该市旅游收入的年平均增长率为x,根据该市2018年旅游收入及2020年旅游预计收入,即可得出关于x的一元二次方程,此题得解.
【解答】解:设该市旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88.
故选:A.
【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
3. 10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(  )
A.9人 B.10人 C.11人 D.12人
【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【解答】解:设参加酒会的人数为x人,
根据题意得: x(x﹣1)=55,
整理,得:x2﹣x﹣110=0,
解得:x1=11,x2=﹣10(不合题意,舍去).
答:参加酒会的人数为11人.
故选:C.
【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
4. 2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为 x(x﹣1)=380 .
【分析】设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场场比赛,共要比赛380场,可列出方程.
【解答】解:设参赛队伍有x支,则
x(x﹣1)=380.
故答案为:x(x﹣1)=380.
【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.
5. (2018·内江)已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__1__.
【解析】设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,
∴at2+bt+1=0,
由题意可知t1=1,t2=2,∴t1+t2=3,
∴x3+x4+2=3,∴x3+x4=1.
6. 学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.
购买件数
销售价格
不超过30件
单价40元
超过30件
每多买1件,购买的所有物品单价降低0.5元,但单价不得低于30元
解:∵30×40=1200<1400,
∴奖品数超过了30件.
设总数为x件,则每件商品的价格为
[40-(x-30)×0.5]元,根据题意可得
x[40-(x-30)×0.5]=1400,
解得x1=40,x2=70,
∵x=70时,40-(70-30)×0.5=20<30,
∴x=70,不合题意,舍去.
答:王老师购买该奖品的件数为40.
类型五 方程与方程组及其它方程的综合应用
1. (2018?乐山?10分)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
(1)证明:由题意可得:
△=(1﹣5m)2﹣4m×(﹣5)
=1+25m2﹣20m+20m
=25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根;
(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;
(3)解:由(2)得:当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴ =2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.
2. 商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加 2x 件,每件商品,盈利 50﹣x 元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【解答】解:(1)当天盈利:(50﹣3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元.
故答案为:2x;50﹣x.
(3)根据题意,得:(50﹣x)×(30+2x)=2000,
整理,得:x2﹣35x+250=0,
解得:x1=10,x2=25,
∵商城要尽快减少库存,
∴x=25.
答:每件商品降价25元时,商场日盈利可达到2000元.
【点评】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或算式)是解题的关键.
3. (2018?宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;
(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;
(3)利用n的值即可得出关于a的等式求出答案.
【解答】解:(1)由题意可得:40n=12,
解得:n=0.3;
(2)由题意可得:40+40(1+m)+40(1+m)2=190,
解得:m1=,m2=﹣(舍去),
∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),
(3)设第一年用乙方案治理降低了100n=100×0.3=30,
则(30﹣a)+2a=39.5,
解得:a=9.5,
则Q=20.5.
设第一年用甲方案整理降低的Q值为x,
第二年Q值因乙方案治理降低了100n=100×0.3=30,
解法一:(30﹣a)+2a=39.5
a=9.5
x=20.5
解法二:
解得:
【点评】考查了一元二次方程和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
4. (2018?遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克)

34.8
32
29.6
28

售价x(元/千克)

22.6
24
25.2
26

(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;
(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
将(22.6,34.8)、(24,32)代入y=kx+b,
,解得:,
∴y与x之间的函数关系式为y=﹣2x+80.
当x=23.5时,y=﹣2x+80=33.
答:当天该水果的销售量为33千克.
(2)根据题意得:(x﹣20)(﹣2x+80)=150,
解得:x1=35,x2=25.
∵20≤x≤32,
∴x=25.
答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.
同课章节目录