备考2019中考数学高频考点剖析
专题十一 统计与概率之统计问题
考点扫描☆聚焦中考
统计问题,是每年中考的都会涉及的问题,考查的知识点包括统计方面的基本概念、统计图的应用和统计综合问题三个方面,总体来看,难度系数低,以选择填空为主。每年中考统计问题必有一解析题出现。解析题主要以统计图的综合应用为主。结合2017年全国各地中考的实例,我们从三方面进行统计问题的探讨:
(1)统计方面的基本概念;
(2)条形、折线和扇形统计图;
(3)统计问题的综合应用.
考点剖析☆典型例题
例1以下调查中适合做普查的是( )
A.值日老师调查各班学生的出勤情况 B.调查长江水的污染情况
C.调查某种钢笔的使用情况 D.中央电视台调查某节目的收视率
例2某篮球队12名队员的年龄如表:
年龄(岁)
18
19
20
21
人数
5
4
1
2
则这12名队员年龄的众数和平均数分别是( )
A.18,19 B.19,19 C.18,19.5 D.19,19.5
例32017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是( )
A.抽取的学生人数为50人
B.“非常了解”的人数占抽取的学生人数的12%
C.a=72°
D.全校“不了解”的人数估计有428人
例4(2018?陕西?7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A.B.C.D四组,绘制了如下统计图表:
“垃圾分类知识及投放情况”问卷测试成绩统计表
依据以上统计信息,解答下列问题:
(1)求得m= ,n= ;
(2)这次测试成绩的中位数落在 组;
(3)求本次全部测试成绩的平均数.
例5(2018年江苏省泰州市?8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.
根据以上信息,网答下列问题
(1)直接写出图中a,m的值;
(2)分别求网购与视频软件的人均利润;
(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.
考点过关☆专项突破
类型一 统计相关概念
1. 数据2,2,3,4,5的中位数是( ).
A.2 B.3 C.4 D.5
2. (2019杭州萧山区模拟)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是( )
A.前一组数据的中位数是200
B.前一组数据的众数是200
C.后一组数据的平均数等于前一组数据的平均数减去200
D.后一组数据的方差等于前一组数据的方差减去200
3. (2018·广西贺州·3分)若一组数据:1.2.x、4.5的众数为5,则这组数据的中位数是( )
A.1 B.2 C.4 D.5
4. 已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是( )
A.a,a3 B.a, C. a, D.,
5. (2018·浙江省台州·4分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
6. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
7. .一组数据:1,3,4,4,x,5,5,8,10,其平均数是5,则众数是 .
8. (2018·辽宁省抚顺市)(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中, 的成绩更稳定.
9. (2018·四川宜宾·3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 .
教师
成绩
甲
乙
丙
笔试
80分
82分
78分
面试
76分
74分
78分
10. 为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m)
频数
1.09~1.19
8
1.19~1.29
12
1.29~1.39
A
1.39~1.49
10
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
类型二 统计图的应用
1. 某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)
选修课
A
B
C
D
E
F
人数
20
30
根据图标提供的信息,下列结论错误的是( )
A.这次被调查的学生人数为200人
B.扇形统计图中E部分扇形的圆心角为72°
C.被调查的学生中最想选F的人数为35人
D.被调查的学生中最想选D的有55人
2.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是 万步.
3.随着经济的发展,人们的生活水平不断地提高.如图是西湖景点2009﹣2011年游客总人数和旅游收入年增长率统计图.已知该景点2010年旅游收入4500万元.下列说法:
①三年中该景点2011年旅游收入最高;
②与2009年相比,该景点2011年的旅游收入增加[4500×(1+29%)﹣4500×(1﹣33%)]万元;
③若按2011年游客人数的年增长率计算,2012年该景点游客总人数将达到280×(1)万人次,
其中正确的个数是( )
A.0 B.1 C.2 D.3
4. (2018·辽宁省葫芦岛市) 在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( )
A.众数是90分 B.中位数是95分 C.平均数是95分 D.方差是15
5. (2018·辽宁省葫芦岛市) 在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( )
A.众数是90分 B.中位数是95分 C.平均数是95分 D.方差是15
6. 为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):
根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数.
(2)将条形统计图补充完整.
(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.
7. 乐乐是一名健步运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),并将记录结果绘制成了如图所示的统计图(不完整).
(1)若乐乐这个月平均每天健步走的步数为1.32万步,试求她走1.3万步和1.5万步的天数;
(2)求这组数据中的众数和中位数.
8. (2019嘉兴模拟)随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如图1),并将调查结果绘制成图2和图3所示的统计图(均不完整).
请根据统计图中提供的信息,解答下列问题:
(1)求出本次接受调查的总人数,并将条形统计图补充完整;
(2)表示观点B的扇形的圆心角度数为 度;
(3)若嘉善人口总数约为60万,请根据图中信息,估计嘉善市民认同观点D的人数.
9. (2018·广西贺州·8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时)
频数(人数)
频率
2≤t<3
4
0.1
3≤t<4
10
0.25
4≤t<5
a
0.15
5≤t<6
8
b
6≤t<7
12
0.3
合计
40
1
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
类型三 统计方面的综合应用
1.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐
2.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?
3.(2018·湖北省武汉·8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.
学生读书数量统计表
阅读量/本
学生人数
1
15
2
a
3
b
4
5
(1)直接写出m、a、b的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?
4. (2018·辽宁省沈阳市)(8.00分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.
据统计图提供的信息,解答下列问题:
(1)在这次调查中一共抽取了 名学生,m的值是 .
(2)请根据据以上信息直在答题卡上补全条形统计图;
(3)扇形统计图中,“数学”所对应的圆心角度数是 度;
(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.
5. (2018?莱芜?8分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)扇形统计图中D所在扇形的圆心角为 ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
6. (2018·辽宁大连·12分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的学生中,最喜欢乒乓球的有 人,最喜欢篮球的学生数占被调查总人数的百分比为 %;
(2)被调查学生的总数为 人,其中,最喜欢篮球的有 人,最喜欢足球的学生数占被调查总人数的百分比为 %;
(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.
7. (2018·山东威海·9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量
3首
4首
4首
6首
7首
8首
人数
10
10
15
40
25
20
请根据调查的信息分析:
活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
8. (2018年江苏省宿迁)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。 ? 请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数。
9. (2018?甘肃白银,定西,武威)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按,,,四个等级进行统计,制成了如下不完整的统计图.(说明:级:8分—10分,级:7分—7.9分,级:6分—6.9分,级:1分—5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,对应的扇形的圆心角是_______度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?
备考2019中考数学高频考点剖析
专题十一 统计与概率之统计问题
考点扫描☆聚焦中考
统计问题,是每年中考的都会涉及的问题,考查的知识点包括统计方面的基本概念、统计图的应用和统计综合问题三个方面,总体来看,难度系数低,以选择填空为主。每年中考统计问题必有一解析题出现。解析题主要以统计图的综合应用为主。结合2017年全国各地中考的实例,我们从三方面进行统计问题的探讨:
(1)统计方面的基本概念;
(2)条形、折线和扇形统计图;
(3)统计问题的综合应用.
考点剖析☆典型例题
例1以下调查中适合做普查的是( )
A.值日老师调查各班学生的出勤情况 B.调查长江水的污染情况
C.调查某种钢笔的使用情况 D.中央电视台调查某节目的收视率
知识点:全面调查与抽样调查
分析:有普查得到的调查结果比较准确,但所费人力、物、时间较多;一般来说,对于具有破坏性的调查,或无法进行普查时,应选择抽样调查.
解析:A.工作量小,没有破坏性,适合普查; B、D范围广,工作量大,不宜采取普查,只能采取抽样调查;C调查具有破坏性,适宜抽样调查.
例2某篮球队12名队员的年龄如表:
年龄(岁)
18
19
20
21
人数
5
4
1
2
则这12名队员年龄的众数和平均数分别是( )
A.18,19 B.19,19 C.18,19.5 D.19,19.5
【考点】众数;加权平均数.
【分析】根据众数及平均数的概念求解.
【解答】解:年龄为18岁的队员人数最多,众数是18;
平均数==19.
故选:A.
【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.
例32017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是( )
A.抽取的学生人数为50人
B.“非常了解”的人数占抽取的学生人数的12%
C.a=72°
D.全校“不了解”的人数估计有428人
【分析】利用图中信息一一判断即可解决问题;
【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,
“非常了解”的人数占抽取的学生人数的=12%,故B正确,
α=360°×=72°,故正确,
全校“不了解”的人数估计有1300×=468(人),故D错误,
故选:D.
【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
例4(2018?陕西?7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A.B.C.D四组,绘制了如下统计图表:
“垃圾分类知识及投放情况”问卷测试成绩统计表
依据以上统计信息,解答下列问题:
(1)求得m= ,n= ;
(2)这次测试成绩的中位数落在 组;
(3)求本次全部测试成绩的平均数.
【答案】(1)30;19%;(2)B;(3)80.1分.
【解析】【分析】(1)根据B组的频数以及频率可求得样本容量,然后用样本容量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;
(2)根据中位数的定义进行解答即可得解;
(3)根据平均数的定义进行求解即可得.
【详解】(1)72÷36%=200,m=200×15%=30,n==19%,
故答案为:30,19%;
(2)一共有200个数据,从小到大排序后中位数是第100个、第101个数据的平均数,观察可知中位数落在B组,
故答案为:B;
(3)本次全部测试的平均成绩==80.1分.
【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键.
例5(2018年江苏省泰州市?8分)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.
根据以上信息,网答下列问题
(1)直接写出图中a,m的值;
(2)分别求网购与视频软件的人均利润;
(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.
【分析】(1)根据各类别百分比之和为1可得a的值,由游戏的利润及其所占百分比可得总利润;
(2)用网购与视频软件的利润除以其对应人数即可得;
(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据“调整后四个类别的利润相加=原总利润+60”列出方程,解之即可作出判断.
【解答】解:(1)a=100﹣(10+40+30)=20,
∵软件总利润为1200÷40%=3000,
∴m=3000﹣(1200+560+280)=960;
(2)网购软件的人均利润为=160元/人,
视频软件的人均利润=140元/人;
(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,
根据题意,得:1200+280+160x+140(10﹣x)=3000+60,
解得:x=9,
即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.
【点评】本题考查条形统计图、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.
考点过关☆专项突破
类型一 统计相关概念
1. 数据2,2,3,4,5的中位数是( ).
A.2 B.3 C.4 D.5
【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.
【解答】解:从小到大排列为:2,2,3,4,5,
位于最中间的数是3,
则这组数的中位数是3.
故答案为:B.
【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
2. (2019杭州萧山区模拟)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是( )
A.前一组数据的中位数是200
B.前一组数据的众数是200
C.后一组数据的平均数等于前一组数据的平均数减去200
D.后一组数据的方差等于前一组数据的方差减去200
【分析】由中位数、众数、平均数及方差的意义逐一判断可得.
【解答】解:A.前一组数据的中位数是200,正确,此选项不符合题意;
B.前一组数据的众数是200,正确,此选项不符合题意;
C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;
D.后一组数据的方差等于前一组数据的方差,此选项符合题意;
故选:D.
【点评】本题主要考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.
3. (2018·广西贺州·3分)若一组数据:1.2.x、4.5的众数为5,则这组数据的中位数是( )
A.1 B.2 C.4 D.5
【解答】解:∵数据1.2.x、4.5的众数为5,
∴x=5,
将数据从小到大重新排列为1.2.4.5.5,
所以中位数为4,
故选:C.
4. 已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是( )
A.a,a3 B.a, C. a, D.,
【考点】中位数;算术平均数.
【专题】计算题;压轴题.
【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.
【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;
将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.
∴其中位数为.
故选D.
【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
5. (2018·浙江省台州·4分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【解答】解:将数据重新排列为17.18.18.20、20、20、23,
所以这组数据的众数为20分、中位数为20分,
故选:D.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
6. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.
【解答】解:∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选:A.
【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
7. .一组数据:1,3,4,4,x,5,5,8,10,其平均数是5,则众数是 5 .
【考点】众数;算术平均数.
【分析】根据平均数为5求出x的值,再由众数的定义可得出答案.
【解答】解:由题意得,(1+3+4+4+x+5+5+8+10)=5,
解得:x=5,
这组数据中5出现的次数最多,则这组数据的众数为5.
故答案为:5.
【点评】本题考查了众数及平均数的知识,解答本题的关键是掌握众数及中位数的定义.
8. (2018·辽宁省抚顺市)(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中, 乙 的成绩更稳定.
【分析】根据方差的性质,可得答案.
【解答】解:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,
∵=,s甲2>s乙2,
则两名运动员中,乙的成绩更稳定,
故答案为:乙.
【点评】本题考查了方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
9. (2018·四川宜宾·3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 78.8分 .
教师
成绩
甲
乙
丙
笔试
80分
82分
78分
面试
76分
74分
78分
【考点】W2:加权平均数.
【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.
【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),
乙的综合成绩为82×60%+74×40%=78.8(分),
丙的综合成绩为78×60%+78×40%=78(分),
∴被录取的教师为乙,其综合成绩为78.8分,
故答案为:78.8分.
【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.
10. 为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m)
频数
1.09~1.19
8
1.19~1.29
12
1.29~1.39
A
1.39~1.49
10
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
【分析】(1)利用总人数50减去其它组的人数即可求得a的值;
(2)利用总人数乘以对应的比例即可求解.
【解答】解:(1)a=50﹣8﹣12﹣10=20,
;
(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.
类型二 统计图的应用
1. 某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)
选修课
A
B
C
D
E
F
人数
20
30
根据图标提供的信息,下列结论错误的是( )
A.这次被调查的学生人数为200人
B.扇形统计图中E部分扇形的圆心角为72°
C.被调查的学生中最想选F的人数为35人
D.被调查的学生中最想选D的有55人
【考点】VB:扇形统计图;VA:统计表.
【分析】由B课程的人数及其百分比可得总人数,即可判断A选项;先求得E课程所占百分比,再乘以360度即可判断B;总人数乘以D、F的百分比即可求得人数,从而判断出C、D选项.
【解答】解:A、这次被调查的学生人数为=200人,故此选项正确;
B、A课程百分比为×100%=10%,D课程百分比为×100%=25%,
则E所对扇形圆心角度数为360°×(1﹣10%﹣15%﹣12.5%﹣25%﹣17.5%)=72°,故此选项正确;
C、被调查的学生中最想选F的人数为200×17.5%=35人,故此选项正确;
D、被调查的学生中最想选D的有200×25%=50人,故此选项错误;
故选:D.
【点评】本题主要考查扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
2.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是 万步.
【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此判断即可.
【解答】解:∵共有2+8+7+10+3=30个数据,
∴其中位数是第15、16个数据的平均数,而第15、16个数据均为1.3万步,
则中位数是1.3万步,
故答案为:1.3.
【点评】此题主要考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
3.随着经济的发展,人们的生活水平不断地提高.如图是西湖景点2009﹣2011年游客总人数和旅游收入年增长率统计图.已知该景点2010年旅游收入4500万元.下列说法:
①三年中该景点2011年旅游收入最高;
②与2009年相比,该景点2011年的旅游收入增加[4500×(1+29%)﹣4500×(1﹣33%)]万元;
③若按2011年游客人数的年增长率计算,2012年该景点游客总人数将达到280×(1)万人次,
其中正确的个数是( )
A.0 B.1 C.2 D.3
【考点】折线统计图;条形统计图.
【分析】从图中可得出这三年的旅游人数,及每年的增长率,再分析各种说法的正误.
【解答】解:①由于2010年比2009年增长33%,2011年比2010年增长29%,故2011旅游收入最高,正确;
②由于2010年的收入为4500万元,2010年比2009年增长33%,2011年比2010年增长29%,2011年的旅游收入为4500(1+29%)万元,2009年的收入为[4500÷(1+33%)]万元,与2009年相比,该景点2011年的旅游收入增加[4500(1+29%)﹣4500÷(1+33%)]万元,故不正确;
③2011年的旅游人数增长率为÷255,故2012年该景点游客总人数将达到280×(1+)万人次,正确.
故选C.
4. (2018·辽宁省葫芦岛市) 在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( )
A.众数是90分 B.中位数是95分 C.平均数是95分 D.方差是15
【解答】解:A.众数是90分,人数最多,正确;
B.中位数是90分,错误;
C.平均数是分,错误;
D.方差是=19,错误;
故选A.
5. (2018·辽宁省葫芦岛市) 在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是( )
A.众数是90分 B.中位数是95分 C.平均数是95分 D.方差是15
【解答】解:A.众数是90分,人数最多,正确;
B.中位数是90分,错误;
C.平均数是分,错误;
D.方差是=19,错误;
故选A.
6. 为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):
根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数.
(2)将条形统计图补充完整.
(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;
(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;
(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.
【解答】解:(1)60÷30%=200(人),
即本次被调查的学生有200人;
(2)选择文学的学生有:200×15%=30(人),
选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),
补全的条形统计图如下图所示,
(3)1600×(人).
即全校选择体育类的学生有560人.
7. 乐乐是一名健步运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),并将记录结果绘制成了如图所示的统计图(不完整).
(1)若乐乐这个月平均每天健步走的步数为1.32万步,试求她走1.3万步和1.5万步的天数;
(2)求这组数据中的众数和中位数.
【考点】VC:条形统计图;W4:中位数;W5:众数.
【分析】(1)她走1.3万步的天数为x天,她走1.5万步的天数为y天,根据总天数为30天且平均数为1.32万步,据此可得答案;
(2)根据众数和中位数的定义解答即可得.
【解答】解:(1)设她走1.3万步的天数为x天,她走1.5万步的天数为y天,
根据题意,得:,
解得:,
∴她走1.3万步的天数为6天,她走1.5万步的天数为4天;
(2)由条形图可知,1.4万步的天数最多,有10天,则众数为1.4万步;
中位数为第15、16个数据的平均数,则中位数为1.3万步.
【点评】本题主要考查条形统计图和众数、中位数的定义,根据条形统计图得出所需数据并熟练掌握平均数、众数、中位数的定义是解题的关键.
8. (2019嘉兴模拟)随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如图1),并将调查结果绘制成图2和图3所示的统计图(均不完整).
请根据统计图中提供的信息,解答下列问题:
(1)求出本次接受调查的总人数,并将条形统计图补充完整;
(2)表示观点B的扇形的圆心角度数为 36 度;
(3)若嘉善人口总数约为60万,请根据图中信息,估计嘉善市民认同观点D的人数.
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)根据A类观点人数除以A类所占的百分比,可得调查的人数;根据各类调查的人数等于总人数,可得C类别人数,补全条形统计图;
(2)根据B类人数除以调查人数,再乘以360°,可得答案;
(3)用样本中观点D的人数所占比例乘以总人数可得.
【解答】解:(1)2300÷46%=5000(人),故人口总数为5000人.
观点C的人数:5000×26%=1300人,补全图形如下:
(2)表示观点B的扇形的圆心角度数为360°×=36°,
故答案为:36;
(3)60×=10.8(万人),
答:估计嘉善市民认同观点D的大约有10.8万人.
9. (2018·广西贺州·8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时)
频数(人数)
频率
2≤t<3
4
0.1
3≤t<4
10
0.25
4≤t<5
a
0.15
5≤t<6
8
b
6≤t<7
12
0.3
合计
40
1
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
【解答】解:(1)总人数=4÷0.1=40,
∴a=40×0.15=6,b==0.2;
故答案为6,0.2
(2)频数分布直方图如图所示:
(3)由题意得,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为1200×(0.15+0.2+0.3)=780名.
类型三 统计方面的综合应用
1.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 1000 名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)用没有剩的人数除以其所占的百分比即可;
(2)用抽查的总人数减去其他三类的人数,再画出图形即可;
(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.
【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);
故答案为:1000;
(2)剩少量的人数是;1000﹣400﹣250﹣150=200,
补图如下;
(3)18000×=3600(人).
答:该校18000名学生一餐浪费的食物可供3600人食用一餐.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?
【考点】折线统计图;条形统计图;加权平均数;方差.
【分析】(1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;
(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.
【解答】解:(1)总人数:(5+6)÷55%=20(人),
第三次的优秀率:(8+5)÷20×100%=65%,
第四次乙组的优秀人数为:20×85%﹣8=17﹣8=9(人).
补全条形统计图,如图所示:
(2)=(6+8+5+9)÷4=7,
S2乙组=×[(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=2.5,
S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.
3.(2018·湖北省武汉·8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.
学生读书数量统计表
阅读量/本
学生人数
1
15
2
a
3
b
4
5
(1)直接写出m、a、b的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?
【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;
(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.
【解答】解:(1)由题意可得,
m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,
即m的值是50,a的值是10,b的值是20;
(2)(1×15+2×10+3×20+4×5)×=1150(本),
答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.
【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
4. (2018·辽宁省沈阳市)(8.00分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.
据统计图提供的信息,解答下列问题:
(1)在这次调查中一共抽取了 50 名学生,m的值是 18 .
(2)请根据据以上信息直在答题卡上补全条形统计图;
(3)扇形统计图中,“数学”所对应的圆心角度数是 108 度;
(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.
【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;
(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;
(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.
【解答】解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生,
m%=9÷50×100%=18%,
故答案为:50,18;
(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),
补全的条形统计图如右图所示;
(3)扇形统计图中,“数学”所对应的圆心角度数是:360°×=108°,
故答案为:108;
(4)1000×=300(名),
答:该校九年级学生中有300名学生对数学感兴趣.
【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
5. (2018?莱芜?8分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了 120 名学生;
(2)扇形统计图中D所在扇形的圆心角为 54° ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
【分析】(1)根据B的人数除以占的百分比即可得到总人数;
(2)先根据题意列出算式,再求出即可;
(3)先求出对应的人数,再画出即可;
(4)先列出算式,再求出即可.
【解答】解:(1)(25+23)÷40%=120(名),
即此次共调查了120名学生,
故答案为:120;
(2)360°×=54°,
即扇形统计图中D所在扇形的圆心角为54°,
故答案为:54°;
(3)如图所示:
(4)800×=200(人),
答:估计对食品安全知识“非常了解”的学生的人数是200人.
【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.
6. (2018·辽宁大连·12分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的学生中,最喜欢乒乓球的有 人,最喜欢篮球的学生数占被调查总人数的百分比为 %;
(2)被调查学生的总数为 人,其中,最喜欢篮球的有 人,最喜欢足球的学生数占被调查总人数的百分比为 %;
(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.
解:(1)由题可得:被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%.
故答案为:4;32;
(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;
故答案为:50;16;24;
(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.
7. (2018·山东威海·9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量
3首
4首
4首
6首
7首
8首
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
【分析】(1)根据统计图中的数据可以求得这组数据的中位数;
(2)根基表格中的数据可以解答本题;
(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.
【解答】解:(1)本次调查的学生有:20÷=120(名),
背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),
∵15+45=60,
∴这组数据的中位数是:(4+5)÷2=4.5(首),
故答案为:4.5首;
(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),
答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;
(3)活动启动之初的中位数是4.5首,众数是4首,
大赛比赛后一个月时的中位数是6首,众数是6首,
由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.
【点评】本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
8. (2018年江苏省宿迁)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。 ? 请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数。
【答案】(1)0.2(2)解:10÷0.1=100,100×0.32=32,100×0.2=20补全征文比赛成绩频数分布直方图如图: (3)解:由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,∴全市获得一等奖征文的篇数为:1000×0.3=300(篇).答:全市获得一等奖征文的篇数为300篇.
【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图
【解析】【解答】(1)解:(1)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38∴抽取的篇数为:38÷0.38=100(篇),∴a=100×0.32=32(篇),∴b=100-38-32-10=20(篇),∴c=20÷100=0.2.故答案为:0.2.【分析】(1)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a,再根据频率=频数÷总数求出c.(2)由(1)中数据可补全征文比赛成绩频数分布直方图.(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.
9. (2018?甘肃白银,定西,武威)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按,,,四个等级进行统计,制成了如下不完整的统计图.(说明:级:8分—10分,级:7分—7.9分,级:6分—6.9分,级:1分—5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,对应的扇形的圆心角是_______度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?
【答案】(1)117;(2)画图见解析;(3)B;(4)30人.
【解析】【分析】(1)根据B的认识和所占的百分比,求出总人数是:18÷45%=40,求得
则C级的人数,进而求得
(2)根据(1)求出的C级的人数,即可作出条形统计图;(2)根据扇形统计图,用1减去A、B、C三个级别的百分比,即可求出D级的学生人数占全班学生人数的百分比;(3)一共有40名同学,中间两个数是第20和21,都落在B级,所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)用总人数乘以A级所占的百分比即可求解.
【解答】(1)总人数是:18÷45%=40,
则C级的人数是:40?4?18?5=13.
对应的扇形的圆心角是:
故答案为:117;
(2)如图
(3)B;
(4)
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.