备考2019中考数学高频考点剖析
专题十二 统计与概率之概率问题
考点扫描☆聚焦中考
概率问题,是每年中考的必考内容之一,考查的知识点包括简单的概率计算和概率与统计综合应用两方面,总体来看,难度系数低,以选择填空为主。也有少量的解析题。解析题主要以统计与概率综合应用为主。结合2018年全国各地中考的实例,我们从三方面进行概率问题的探讨:
(1)简单的概率计算;
(2)频率与概率的相关问题;
(3)概率与统计的综合应用问题.
考点剖析☆典型例题
例1一枚质地均匀的骰子的6个面上分别刻有1?6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是 .
例2一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
例3如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向1的概率为 ;
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
例4(2018?呼和浩特?3分)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为 .
例5某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
考点过关☆专项突破
类型一 简单的概率计算
1. 在某个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )
A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大 D.科比罚球投篮1次,不命中的可能性较小
2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( )
A. B. C. D.
3. 如图,四个完全相同的小球上分别写有:0,,﹣5,π四个实数,把它们全部装入一个布袋里,从布袋里任意摸出1个球,球上的数是无理数的概率为 .
4. 某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是( )
A. B. C. D.
5.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 .
6. 从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是 .
7. (2018·浙江舟山·4分)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。
8. (2018·云南省曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.
(1)用树状图或者列表表示所有可能出现的结果;
(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.
类型二 频率与概率的相关计算
1. (2018?湖南省永州市?4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .
2.(2018·湖北省武汉·3分)下表记录了某种幼树在一定条件下移植成活情况
移植总数n
400
1500
3500
7000
9000
14000
成活数m
325
1336
3203
6335
8073
12628
成活的频率(精确到0.01)
0.813
0.891
0.915
0.905
0.897
0.902
由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1)
3.(2018·广西贺州·8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时)
频数(人数)
频率
2≤t<3
4
0.1
3≤t<4
10
0.25
4≤t<5
a
0.15
5≤t<6
8
b
6≤t<7
12
0.3
合计
40
1
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
类型三 统计与概率的综合应用
1.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有 人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
2.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1.A2,图案为“蝴蝶”的卡片记为B)
3.(2018·四川宜宾·8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:
(1)该班共有学生人;
(2)请将条形统计图补充完整;
(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
4. 为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学;
(4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?
5. 漳州市教育局到某校抽查七年级学生“根据音标写单词”的水平,随机抽取若干名学生进行测试(成绩取整数,满分为100分).如下两幅是尚未绘制完整的统计图,请根据图中提供的信息,解答下列问题:
(1)本次抽取的学生有 人;
(2)该年段有450名学生,若全部参加测试,请估计60分以上(含60分)有 人;
(3)甲、乙、丙是该校三名英语成绩优秀的学生,随机抽取其中两名学生介绍英语学习经验,请用树状图或列表法表示所有可能的结果,并求抽到甲、乙两名学生的概率.
6. (2019杭州萧山区模拟)某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
备考2019中考数学高频考点剖析
专题十二 统计与概率之概率问题
考点扫描☆聚焦中考
概率问题,是每年中考的必考内容之一,考查的知识点包括简单的概率计算和概率与统计综合应用两方面,总体来看,难度系数低,以选择填空为主。也有少量的解析题。解析题主要以统计与概率综合应用为主。结合2018年全国各地中考的实例,我们从三方面进行概率问题的探讨:
(1)简单的概率计算;
(2)频率与概率的相关问题;
(3)概率与统计的综合应用问题.
考点剖析☆典型例题
例1一枚质地均匀的骰子的6个面上分别刻有1?6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是 .
【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出向上一面的点数是4的概率.
【解答】解:由概率公式P(向上一面的点数是4)=.
故答案为:.
【点评】考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
例2一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
考点: 列表法与树状图法.
分析: 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
解答:解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:C.
点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
例3如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向1的概率为 ;
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
【考点】: 游戏公平性;列表法与树状图法.
【解析】: (1)三个等可能的情况中出现1的情况有一种,求出概率即可;
(2)列表得出所有等可能的情况数,求出两人获胜的概率,比较即可得到结果.
【解答】解:(1)根据题意得:随机转动转盘一次,停止后,指针指向1的概率为;
故答案为:;
(2)列表得:
1 2 3
1 (1,1) (2,1) (3,1)
2 (1,2) (2,2) (3,2)
3 (1,3) (2,3) (3,3)
所有等可能的情况有9种,其中两数之积为偶数的情况有5种,之积为奇数的情况有4种,∴P(小明获胜)=,P(小华获胜)=,
∵>,∴该游戏不公平.
点评: 此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
例4(2018?呼和浩特?3分)已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为 .
解:当2k﹣1>0时,
解得:k>,则<k≤3时,y随x增加而增加,
故﹣3≤k<时,y随x增加而减小,
则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为:=.
故答案为:.
例5某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 40人 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
【分析】(1)利用A项目的频数除以它所占的百分比得到调查的总人数,然后计算出C项目的人数后补全条形统计图;
(2)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生担任活动记录员的结果数,然后利用概率公式求解.
【解答】解:(1)调查的总人数为12÷30%=40(人),
所以C项目的人数为40﹣12﹣14﹣4=10(人)
条形统计图补充为:
故答案为40人;
(2)画树状图为:
共有12种等可能的结果数,其中恰好选中1名男生和1名女生担任活动记录员的结果数为8,
所以恰好选中1名男生和1名女生担任活动记录员的概率==.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
考点过关☆专项突破
类型一 简单的概率计算
1. 在某个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )
A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大 D.科比罚球投篮1次,不命中的可能性较小
【分析】根据概率的意义对各选项分析判断后利用排除法求解.
【解答】解:科比罚球投篮的命中率大约是83.3%,
科比罚球投篮2次,不一定全部命中,A选项错误、B选项正确;
科比罚球投篮1次,命中的可能性较大、不命中的可能性较小,C、D选项说法正确;
故选:A.
【点评】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( )
A. B. C. D.
【考点】概率公式.
【分析】用红球的个数除以球的总个数即可.
【解答】解:∵布袋里装有5个球,其中3个红球,2个白球,
∴从中任意摸出一个球,则摸出的球是红球的概率是:.
故选:D.
3. 如图,四个完全相同的小球上分别写有:0,,﹣5,π四个实数,把它们全部装入一个布袋里,从布袋里任意摸出1个球,球上的数是无理数的概率为 .
【考点】X4:概率公式;26:无理数.
【分析】根据无理数的定义得到四个数中只有π为无理数,然后根据概率公式求解.
【解答】解:从布袋里任意摸出1个球,球上的数是无理数的概率=.
故答案为.
【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了无理数的定义.
4. 某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是( )
A. B. C. D.
【解答】解:从这个小组中任意选出一名组长,每个人被选到的可能性相同,
所有的选法有10种,
女生当选为组长的方法有4种,
由古典概型的概率公式得到其中女生当选为组长的概率是=.
故选:A.
5.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 .
【解答】解:如图所示:连接OA.
∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;
故答案为:.
6. 从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是 .
【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.
【解答】解:列表如下:
﹣2
﹣1
1
2
﹣2
2
﹣2
﹣4
﹣1
2
﹣1
﹣2
1
﹣2
﹣1
2
2
﹣4
﹣2
2
由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,
∴积为大于﹣4小于2的概率为=,
故答案为:.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
7. (2018·浙江舟山·4分)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。
【考点】游戏公平性,概率公式
【分析】可列举抛硬币连续抛两次可能的情况,得出两次都是正面的情况数,可求得小红赢的概率;游戏的公平是双方赢的概率都是
【解析】【解答】解:抛硬币连续抛两次可能的情况:(正面,正面),(正面,反面),(反面,正面),(反面,反面),一共有4种,而两次都是正面的只有一次,则P(两次都是正面)=<所以该游戏是不公平的。故答案为;不公平【点评】本题考查游戏公平性及概率公式.
8. (2018·云南省曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.
(1)用树状图或者列表表示所有可能出现的结果;
(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.
【解答】解:(1)由题意可得,
共有12种等可能的结果;
(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,
∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为=.
类型二 频率与概率的相关计算
1. (2018?湖南省永州市?4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 100 .
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
【解答】解:由题意可得,=0.03,
解得,n=100.
故估计n大约是100.
故答案为:100.
【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
2.(2018·湖北省武汉·3分)下表记录了某种幼树在一定条件下移植成活情况
移植总数n
400
1500
3500
7000
9000
14000
成活数m
325
1336
3203
6335
8073
12628
成活的频率(精确到0.01)
0.813
0.891
0.915
0.905
0.897
0.902
由此估计这种幼树在此条件下移植成活的概率约是 0.9 (精确到0.1)
【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率
∴这种幼树移植成活率的概率约为0.9.
故答案为:0.9.
【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
3.(2018·广西贺州·8分)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时)
频数(人数)
频率
2≤t<3
4
0.1
3≤t<4
10
0.25
4≤t<5
a
0.15
5≤t<6
8
b
6≤t<7
12
0.3
合计
40
1
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
【解答】解:(1)总人数=4÷0.1=40,
∴a=40×0.15=6,b==0.2;
故答案为6,0.2
(2)频数分布直方图如图所示:
(3)由题意得,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为1200×(0.15+0.2+0.3)=780名.
类型三 统计与概率的综合应用
1.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有 人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;
(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;
(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;
(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.
【解答】解:(1)本次调查的学生共有:30÷30%=100(人);
故答案为:100;
(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:
(3)选择“唱歌”的学生有:1200×=480(人);
(4)根据题意画树形图:
共有12种情况,被选取的两人恰好是甲和乙有2种情况,
则被选取的两人恰好是甲和乙的概率是=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
2.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1.A2,图案为“蝴蝶”的卡片记为B)
【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解
【解答】解:列表如下:
A1
A2
B
A1
(A1,A1)
(A2,A1)
(B,A1)
A2
(A1,A2)
(A2,A2)
(B,A2)
B
(A1,B)
(A2,B)
(B,B)
由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,
所以抽出的两张卡片上的图案都是“金鱼”的概率为.
【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
3.(2018·四川宜宾·8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:
(1)该班共有学生人;
(2)请将条形统计图补充完整;
(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.
【分析】(1)根据化学学科人数及其所占百分比可得总人数;
(2)根据各学科人数之和等于总人数求得历史的人数即可;
(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
【解答】解:(1)该班学生总数为10÷20%=50人;
(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
补全图形如下:
(3)列表如下:
化学
生物
政治
历史
地理
化学
生物、化学
政治、化学
历史、化学
地理、化学
生物
化学、生物
政治、生物
历史、生物
地理、生物
政治
化学、政治
生物、政治
历史、政治
地理、政治
历史
化学、历史
生物、历史
政治、历史
地理、历史
地理
化学、地理
生物、地理
政治、地理
历史、地理
由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
所以该同学恰好选中化学、历史两科的概率为=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
4. 为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学;
(4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?
【分析】(1)根据上学方式为“私家车”的学生数除以所占的百分比即可求出调查的学生总数;
(2)根据总学生数求出上学方式为“公交车”的学生数,补全条形统计图即可;
(3)求出上学方式为“公交车”的学生所占的百分比,乘以2400即可得到结果;
(4)根据题意画出相应的树状图,得出所有等可能的情况数,找出第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大的情况数,即可求出所求的概率.
【解答】
解:(1)32÷40%=80(名),
则在这次调查中,一共抽取了80名学生;
(2)上学方式为“公交车”的学生为80﹣(8+12+32+8)=20(名),
补全频数分布直方图,如图所示;
(3)根据题意得:2400×=600(名),
则全校所有学生中有600名学生乘坐公交车上学;
(4)根据题意画出树状图,如图所示:
得到所有等可能的情况数有16种,其中第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,即有小礼物赠送的有6种,则P==,
则获得小礼物的概率是.
【点评】此题考查了频数(率)分布直方图,扇形统计图,用样本估计总体,以及列表法与树状图法,弄清题意是解本题的关键.
5. 漳州市教育局到某校抽查七年级学生“根据音标写单词”的水平,随机抽取若干名学生进行测试(成绩取整数,满分为100分).如下两幅是尚未绘制完整的统计图,请根据图中提供的信息,解答下列问题:
(1)本次抽取的学生有 人;
(2)该年段有450名学生,若全部参加测试,请估计60分以上(含60分)有 人;
(3)甲、乙、丙是该校三名英语成绩优秀的学生,随机抽取其中两名学生介绍英语学习经验,请用树状图或列表法表示所有可能的结果,并求抽到甲、乙两名学生的概率.
【分析】(1)根据第三组的频数为8,所占百分比为16%,即可求出本次抽取的学生总数;
(2)先求出60分以上(含60分)所占百分比,再利用样本估计总体的思想,用450乘以这个百分比即可;
(3)首先根据题意列表,然后由表格求得所有等可能的结果与抽到甲、乙两名学生的情况,再利用概率公式求解即可求得答案.
【解答】解:(1)8÷16%=50(人);
(2)1﹣4%=96%,450×96%=432(人);
(3)列表如下:
共有6种情况,其中抽到甲、乙两名同学的是2种,
所以P(抽到甲、乙两名同学)==.
故答案为50;432.
【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、用样本估计总体的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
6. (2019杭州萧山区模拟)某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;
(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
故答案为:抽样调查.
(2)所调查的4个班征集到的作品数为:6÷=24件,
C班有24﹣(4+6+4)=10件,
补全条形图如图所示,
扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
故答案为:150°;
(3)∵平均每个班=6件,
∴估计全校共征集作品6×30=180件.
(4)画树状图得:
∵共有20种等可能的结果,两名学生性别相同的有8种情况,
∴恰好选取的两名学生性别相同的概率为=.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.