课时跟踪检测(九) 数系的扩充和复数的概念
层级一 学业水平达标
1.以3i-的虚部为实部,以3i2+i的实部为虚部的复数是( )
A.3-3i B.3+i
C.-+i D.+i
解析:选A 3i-的虚部为3,3i2+i=-3+i的实部为-3,故选A.
2.已知复数z1=a+2i,z2=3+(a2-7)i,a∈R,若z1=z2,则a=( )
A.2 B.3
C.-3 D.9
解析:选B 因为z1=a+2i,z2=3+(a2-7)i,且z1=z2,所以有解得a=3.故选B.
3.若a,b∈R,i是虚数单位,a+2 018i=2-bi,则a2+bi=( )
A.2 018+2i B.2 018+4i
C.2+2 018i D.4-2 018i
解析:选D 因为a+2 018i=2-bi,所以a=2,-b=2 018,即a=2,b=-2 018,所以a2+bi=4-2 018i.
4.下列命题中:①若x,y∈C,则x+yi=1+i的充要条件是x=y=1;②纯虚数集相对于复数集的补集是虚数集;③若(z1-z2)2+(z2-z3)2=0,则z1=z2=z3;④若实数a与ai对应,则实数集与复数集一一对应.正确的命题的个数是( )
A.0 B.1
C.2 D.3
解析:选A ①取x=i,y=-i,则x+yi=1+i,但不满足x=y=1,故①错; ②③错;对于④,a=0时,ai=0,④错,故选A.
5.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是( )
A.|a|=|b| B.a<0且a=-b
C.a>0且a≠b D.a≤0
解析:选D 复数z为实数的充要条件是a+|a|=0,故a≤0.
6.若复数z=a2-3+2ai的实部与虚部互为相反数,则实数a的值为________.
解析:由条件知a2-3+2a=0,解得a=1或a=-3.
答案:1或-3
7.如果(m2-1)+(m2-2m)i>1,则实数m的值为______.
解析:由题意得解得m=2.
答案:2
8.已知z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=________,n=________.
解析:由复数相等的充要条件有
?
答案:2 ±2
9.分别求满足下列条件的实数x,y的值.
(1)2x-1+(y+1)i=x-y+(-x-y)i;
(2)+(x2-2x-3)i=0.
解:(1)∵x,y∈R,
∴由复数相等的定义得
解得
(2)∵x∈R,
∴由复数相等的定义得
即∴x=3.
10.实数m取什么值时,复数lg(m2-2m-2)+(m2+3m+2)i分别是(1)纯虚数;(2)实数.
解:(1)复数lg(m2-2m-2)+(m2+3m+2)i为纯虚数,则
所以所以m=3.
即m=3时,lg(m2-2m-2)+(m2+3m+2)i为纯虚数.
(2)复数lg(m2-2m-2)+(m2+3m+2)i为实数,则
解②得m=-2或m=-1,
代入①检验知满足不等式,
所以当m=-2或m=-1时,lg(m2-2m-2)+(m2+3m+2)i为实数.
层级二 应试能力达标
1.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则( )
A.a=-1 B.a≠-1且a≠2
C.a≠-1 D.a≠2
解析:选C 若复数(a2-a-2)+(|a-1|-1)i不是纯虚数,则有a2-a-2≠0或|a-1|-1=0,解得a≠-1.故应选C.
2.已知集合M={1,(m2-3m-1)+(m2-5m-6)i},N={1,3},M∩N={1,3},则实数m的值为( )
A.4 B.-1
C.4或-1 D.1或6
解析:选B 由题意知∴m=-1.
3.已知关于x的方程x2+(m+2i)x+2+2i=0(m∈R)有实数根n,且z=m+ni,则复数z等于( )
A.3+i B.3-i
C.-3-i D.-3+i
解析:选B 由题意知n2+(m+2i)n+2+2i=0,
即解得
∴z=3-i,故应选B.
4.若复数z1=sin 2θ+icos θ,z2=cos θ+isin θ(θ∈R),z1=z2,则θ等于( )
A.kπ(k∈Z) B.2kπ+(k∈Z)
C.2kπ±(k∈Z) D.2kπ+(k∈Z)
解析:选D 由复数相等的定义可知,
∴cos θ=,sin θ=.
∴θ=+2kπ,k∈Z,故选D.
5.已知z1=(-4a+1)+(2a2+3a)i,z2=2a+(a2+a)i,其中a∈R.若z1>z2,则a的取值集合为________.
解析:∵z1>z2,∴
∴a=0,故所求a的取值集合为{0}.
答案:{0}
6.若复数z1=m2+1+(m3+3m2+2m)i,z2=4m-2+(m2-5m)i,m为实数,且z1>z2,则实数m的取值集合为________.
解析:∵z1>z2,
∴解得m=0,
∴实数m的取值集合为{0}.
答案:{0}
7.定义运算=ad-bc,如果(x+y)+(x+3)i=,求实数x,y的值.
解:由定义运算=ad-bc,
得=3x+2y+yi,
故有(x+y)+(x+3)i=3x+2y+yi.
因为x,y为实数,所以有
得
得x=-1,y=2.
8.已知复数z1=4-m2+(m-2)i,z2=λ+2sin θ+(cos θ-2)i(其中i是虚数单位,m,λ,θ∈R).
(1)若z1为纯虚数,求实数m的值;
(2)若z1=z2,求实数λ的取值范围.
解:(1)∵z1为纯虚数,
则
解得m=-2.
(2)由z1=z2,得
∴λ=4-cos2θ-2sin θ=sin2θ-2sin θ+3
=(sin θ-1)2+2.
∵-1≤sin θ≤1,
∴当sin θ=1时,λmin=2,
当sin θ=-1时,λmax=6,
∴实数λ的取值范围是[2,6].
第1课时 数系的扩充和复数的概念
1.复数的有关概念
(1)复数
①定义:形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1,实部是,虚部是.
②表示方法:复数通常用字母z表示,代数形式为z=a+bi(a,b∈R).
(2)复数集
①定义:全体复数所成的集合.
②表示:通常用大写字母C表示.
[点睛] 复数概念的三点说明
(1)复数集是最大的数集,任何一个数都可以写成a+bi(a,b∈R)的形式,其中0=0+0i.
(2)复数的虚部是实数b而非bi.
(3)复数z=a+bi只有在a,b∈R时才是复数的代数形式,否则不是代数形式.
2.复数相等
在复数集C=中任取两个数a+bi,c+di(a,b,c,d∈R),我们规定:a+bi与c+di相等的充要条件是a=c且b=d.
3.复数的分类
对于复数a+bi,当且仅当b=0时,它是实数;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数.这样,复数z=a+bi可以分类如下:
复数z
[点睛] 复数集、实数集、虚数集、纯虚数集之间的关系
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)若a,b为实数,则z=a+bi为虚数.( )
(2)若a为实数,则z=a一定不是虚数.( )
(3)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )
答案:(1)× (2)√ (3)√
2.在2+,i,8+5i,(1-)i,0.68这几个数中,纯虚数的个数为( )
A.0 B.1
C.2 D.3
答案:C
3.若a-2i=bi+1,a,b∈R,则a2+b2=________.
答案:5
4.设m∈R,复数z=-1-m+(2m-3)i.
(1)若z为实数,则m=________;
(2)若z为纯虚数,则m=________.
答案:(1) (2)-1
复数的概念及分类
[典例] (1)给出下列三个命题:①若z∈C,则z2≥0;②2i-1的虚部是2i;③2i的实部是0.其中真命题的个数为( )
A.0 B.1
C.2 D.3
(2)当m为何实数时,复数z=+(m2-2m-15)i.①是虚数;②是纯虚数.
[解析] (1)对于①,当z∈R时,z2≥0成立,否则不成立,如z=i,z2=-1<0,所以①为假命题;对于②,2i-1=-1+2i,其虚部是2,不是2i,②为假命题;对于③,2i=0+2i,其实部是0,③为真命题.故选B.
[答案] B
(2)①当
即m≠5且m≠-3时,z是虚数.
②当
即m=3或m=-2时,z是纯虚数.
[一题多变]
1.[变设问]本例(2)中条件不变,当m为何值时,z为实数?
解:当即m=5时,z是实数.
2.[变设问]本例(2)中条件不变,当m为何值时,z>0.
解:因为z>0,所以z为实数,需满足
解得m=5.
3.[变条件]已知z=log2(1+m)+ilog(3-m)(m∈R),若z是虚数,求m的取值范围.
解:∵z是虚数,∴log(3-m)≠0,且1+m>0,
即∴-1∴m的取值范围为(-1,2)∪(2,3).
复数分类的关键
(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z=a+bi(a,b∈R)时应先转化形式.
(2)注意分清复数分类中的条件
设复数z=a+bi(a,b∈R),则①z为实数?b=0,②z为虚数?b≠0,③z为纯虚数?a=0,b≠0.④z=0?a=0,且b=0.
复数相等
[典例] (1)已知x2-y2+2xyi=2i,求实数x,y的值;
(2)关于x的方程3x2-x-1=(10-x-2x2)i有实根,求实数a的值.
[解] (1)∵x2-y2+2xyi=2i,
∴
解得或
(2)设方程的实数根为x=m,
则3m2-m-1=(10-m-2m2)i,
∴
解得a=11或a=-.
复数相等问题的解题技巧
(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.
(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.
(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.
[活学活用]
已知关于实数x,y的方程组
有实数解,则实数a,b的值分别为________.
解析:由①可得
解得③
把③代入②得5+4a-(6+b)i=9-8i且a,b∈R,
∴
解得
答案:1 2
层级一 学业水平达标
1.以3i-的虚部为实部,以3i2+i的实部为虚部的复数是( )
A.3-3i B.3+i
C.-+i D.+i
解析:选A 3i-的虚部为3,3i2+i=-3+i的实部为-3,故选A.
2.已知复数z1=a+2i,z2=3+(a2-7)i,a∈R,若z1=z2,则a=( )
A.2 B.3
C.-3 D.9
解析:选B 因为z1=a+2i,z2=3+(a2-7)i,且z1=z2,所以有解得a=3.故选B.
3.若a,b∈R,i是虚数单位,a+2 018i=2-bi,则a2+bi=( )
A.2 018+2i B.2 018+4i
C.2+2 018i D.4-2 018i
解析:选D 因为a+2 018i=2-bi,所以a=2,-b=2 018,即a=2,b=-2 018,所以a2+bi=4-2 018i.
4.下列命题中:①若x,y∈C,则x+yi=1+i的充要条件是x=y=1;②纯虚数集相对于复数集的补集是虚数集;③若(z1-z2)2+(z2-z3)2=0,则z1=z2=z3;④若实数a与ai对应,则实数集与复数集一一对应.正确的命题的个数是( )
A.0 B.1
C.2 D.3
解析:选A ①取x=i,y=-i,则x+yi=1+i,但不满足x=y=1,故①错; ②③错;对于④,a=0时,ai=0,④错,故选A.
5.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是( )
A.|a|=|b| B.a<0且a=-b
C.a>0且a≠b D.a≤0
解析:选D 复数z为实数的充要条件是a+|a|=0,故a≤0.
6.若复数z=a2-3+2ai的实部与虚部互为相反数,则实数a的值为________.
解析:由条件知a2-3+2a=0,解得a=1或a=-3.
答案:1或-3
7.如果(m2-1)+(m2-2m)i>1则实数m的值为______.
解析:由题意得解得m=2.
答案:2
8.已知z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=________,n=________.
解析:由复数相等的充要条件有
?
答案:2 ±2
9.分别求满足下列条件的实数x,y的值.
(1)2x-1+(y+1)i=x-y+(-x-y)i;
(2)+(x2-2x-3)i=0.
解:(1)∵x,y∈R,
∴由复数相等的定义得
解得
(2)∵x∈R,
∴由复数相等的定义得
即∴x=3.
10.实数m取什么值时,复数lg(m2-2m-2)+(m2+3m+2)i分别是(1)纯虚数;(2)实数.
解:(1)复数lg(m2-2m-2)+(m2+3m+2)i为纯虚数,则
所以所以m=3.
即m=3时,lg(m2-2m-2)+(m2+3m+2)i为纯虚数.
(2)复数lg(m2-2m-2)+(m2+3m+2)i为实数,则
解②得m=-2或m=-1,
代入①检验知满足不等式,
所以当m=-2或m=-1时,lg(m2-2m-2)+(m2+3m+2)i为实数.
层级二 应试能力达标
1.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则( )
A.a=-1 B.a≠-1且a≠2
C.a≠-1 D.a≠2
解析:选C 若复数(a2-a-2)+(|a-1|-1)i不是纯虚数,则有a2-a-2≠0或|a-1|-1=0,解得a≠-1.故应选C.
2.已知集合M={1,(m2-3m-1)+(m2-5m-6)i},N={1,3},M∩N={1,3},则实数m的值为( )
A.4 B.-1
C.4或-1 D.1或6
解析:选B 由题意知∴m=-1.
3.已知关于x的方程x2+(m+2i)x+2+2i=0(m∈R)有实数根n,且z=m+ni,则复数z等于( )
A.3+i B.3-i
C.-3-i D.-3+i
解析:选B 由题意知n2+(m+2i)n+2+2i=0,
即解得
∴z=3-i,故应选B.
4.若复数z1=sin 2θ+icos θ,z2=cos θ+isin θ(θ∈R),z1=z2,则θ等于( )
A.kπ(k∈Z) B.2kπ+(k∈Z)
C.2kπ±(k∈Z) D.2kπ+(k∈Z)
解析:选D 由复数相等的定义可知,
∴cos θ=,sin θ=.
∴θ=+2kπ,k∈Z,故选D.
5.已知z1=(-4a+1)+(2a2+3a)i,z2=2a+(a2+a)i,其中a∈R.若z1>z2,则a的取值集合为________.
解析:∵z1>z2,∴
∴a=0,故所求a的取值集合为{0}.
答案:{0}
6.若复数z1=m2+1+(m3+3m2+2m)i,z2=4m-2+(m2-5m)i,m为实数,且z1>z2,则实数m的取值集合为________.
解析:∵z1>z2,
∴解得m=0,
∴实数m的取值集合为{0}.
答案:{0}
7.定义运算=ad-bc,如果(x+y)+(x+3)i=,求实数x,y的值.
解:由定义运算=ad-bc,
得=3x+2y+yi,
故有(x+y)+(x+3)i=3x+2y+yi.
因为x,y为实数,所以有
得
得x=-1,y=2.
8.已知复数z1=4-m2+(m-2)i,z2=λ+2sin θ+(cos θ-2)i(其中i是虚数单位,m,λ,θ∈R).
(1)若z1为纯虚数,求实数m的值;
(2)若z1=z2,求实数λ的取值范围.
解:(1)∵z1为纯虚数,
则
解得m=-2.
(2)由z1=z2,得
∴λ=4-cos2θ-2sin θ=sin2θ-2sin θ+3
=(sin θ-1)2+2.
∵-1≤sin θ≤1,
∴当sin θ=1时,λmin=2,
当sin θ=-1时,λmax=6,
∴实数λ的取值范围是[2,6].
课件20张PPT。
“多练提能·熟生巧”见“课时跟踪检测(九)”
(单击进入电子文档)