2.3 互斥事件
预习课本P138~146,思考并完成以下问题
(1)互斥事件的定义是什么?
(2)对立事件的定义是什么?
(3)互斥事件与对立事件有什么区别和联系?
(4)互斥事件的概率加法公式是什么?
1.互斥事件
(1)定义:在一个试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.
(2)规定:事件A+B发生是指事件A和事件B至少有一个发生.
(3)公式:在一次随机试验中,如果随机事件A和B是互斥事件,那么有P(A+B)=P(A)+P(B).
(4)公式的推广:如果随机事件A1,A2,…,An中任意两个是互斥事件,那么有P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
[点睛] (1)如果事件A与B是互斥事件,那么A与B两事件同时发生的概率为0.
(2)
从集合的角度看,记事件A所含结果组成的集合为集合A,事件B所含结果组成的集合为集合B,事件A与事件B互斥,则集合A与集合B的交集是空集,如图所示.
2.对立事件
(1)定义:
在一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作对立事件,事件A的对立事件记为.
(2)性质:
P(A)+P()=1,即P(A)=1-P().
[点睛] 两个事件是对立事件,它们也一定是互斥事件;两个事件为互斥事件,它们未必是对立事件.
1.判断正误.(正确的打“√”,错误的打“×”)
(1)对立事件一定是互斥事件.( )
(2)A,B为两个事件,则P(A+B)=P(A)+P(B).( )
(3)若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1.( )
(4)事件A,B满足P(A)+P(B)=1,则A,B是对立事件.( )
答案:(1)√ (2)× (3)× (4)×
2.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是( )
A.至多有一次中靶 B.两次都中靶
C.两次都不中靶 D.只有一次中靶
解析:选C 连续射击两次的结果有四种:①两次都中靶;②两次都不中靶;③第一次中靶,第二次没有中靶;
④第一次没有中靶,第二次中靶.“至少有一次中靶”包含①③④三种结果,因此互斥事件是②.
3.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为( )
A.至多有2件次品 B.至多有1件次品
C.至多有2件正品 D.至少有2件正品
解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.
4.甲乙两人下围棋比赛,已知比赛中甲获胜的概率为0.45,两人平局的概率为0.1,则甲输的概率为________.
解析:记事件A=“甲胜乙”,B=“甲、乙战平”,C=“甲不输”,则C=A+B,而A,B是互斥事件,故P(C)=P(A+B)=P(A)+P(B)=0.55.由于甲输与不输为对立事件,故甲输的概率为:1-P(C)=1-0.55=0.45.
答案:0.45
互斥事件和对立事件的判断
[典例] 某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列事件是否是互斥事件,如果是,判断它们是否是对立事件.
(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.
[解] (1)由于事件C“至多订一种报”中可能只订甲报,即事件A与事件C有可能同时发生,故A与C不是互斥事件.
(2)事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故事件B与E是互斥事件.由于事件B和事件E必有一个发生,故B与E也是对立事件.
(3)事件B“至少订一种报”中有可能只订乙报,即有可能不订甲报,也就是说事件B发生,事件D也可能发生,故B与D不是互斥事件.
(4)事件B“至少订一种报”中有3种可能:“只订甲报”“只订乙报”“订甲、乙两种报”.事件C“至多订一种报”中有3种可能:“一种报也不订”“只订甲报”“只订乙报”.即事件B与事件C可能同时发生,故B与C不是互斥事件.
(5)由(4)的分析可知,事件E“一种报也不订”仅仅是事件C的一种可能,事件C与事件E可能同时发生,故C与E不是互斥事件.
判断两个事件是否为互斥事件,主要看它们在一次试验中能否同时发生,若不能同时发生,则这两个事件是互斥事件,若能同时发生,则这两个事件不是互斥事件;判断两个事件是否为对立事件,主要看在一次试验中这两个事件是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.
[活学活用]
某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)恰有1名男生与恰有2名男生;
(2)至少1名男生与全是男生;
(3)至少1名男生与全是女生;
(4)至少1名男生与至少1名女生.
解:从3名男生和2名女生中任选2名同学有3类结果;两男或两女或一男一女.
(1)因为恰有1名男生与恰有2名男生不可能同时发生,所以它们是互斥事件;当恰有2名女生时,它们都没有发生,所以它们不是对立事件.
(2)当恰有2名男生时,至少1名男生与全是男生同时发生,所以它们不是互斥事件.
(3)因为至少1名男生与全是女生不可能同时发生,所以它们是互斥事件;由于它们必有一个发生,所以它们是对立事件.
(4)当选出的是1名男生1名女生时,至少1名男生与至少1名女生同时发生,所以它们不是互斥事件.
互斥事件与对立事件概率公式的应用
[典例] 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中8环以下的概率.
[解] “射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”是彼此互斥的,可运用互斥事件的概率加法公式求解.
记“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A,B,C,D,E,则
(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.
(2)法一:P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87,所以至少射中7环的概率为0.87.
法二:事件“至少射中7环”的对立事件是“射中7环以下”,其概率为0.13,则至少射中7环的概率为1-0.13=0.87.
(3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29,所以射中8环以下的概率为0.29.
运用互斥事件的概率加法公式解题的一般步骤
(1)确定各事件彼此互斥;
(2)求各事件分别发生的概率,再求其和.
值得注意的是:(1)是公式使用的前提条件,不符合这点,是不能运用互斥事件的概率加法公式的.
[活学活用]
在数学考试中,小明的成绩在90分及90分以上的概率是0.18,在80~89分(包括80分与89分,下同)的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.计算下列事件的概率:
(1)小明在数学考试中取得80分及80分以上的成绩;
(2)小明考试及格.
解:分别记小明的成绩在“90分及90分以上”,在“80~89分”,在“70~79分”,在“60~69分”为事件B,C,D,E,显然这四个事件彼此互斥.
(1)小明的成绩在80分及80分以上的概率是
P(B+C)=P(B)+P(C)=0.18+0.51=0.69.
(2)法一:小明考试及格的概率是
P(B+C+D+E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.
法二:因为小明考试不及格的概率是0.07,所以小明考试及格的概率是1-0.07=0.93.
互斥、对立事件与古典概型的综合应用
[典例] 一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
[解] 记事件A1={任取1球为红球};A2={任取1球为黑球};
A3={任取1球为白球};A4={任取1球为绿球},则
P(A1)=,P(A2)=,P(A3)=,P(A4)=.
根据题意知,事件A1,A2,A3,A4彼此互斥,
法一:由互斥事件概率公式,得
(1)取出1球为红球或黑球的概率为
P(A1+A2)=P(A1)+P(A2)=+=.
(2)取出1球为红球或黑球或白球的概率为
P(A1+A2+A3)=P(A1)+P(A2)+P(A3)
=++=.
法二:(1)故取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4.所以取得1球为红球或黑球的概率为
P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)
=1--==.
(2)A1+A2+A3的对立事件为A4,所以
P(A1+A2+A3)=1-P(A4)=1-=.
求复杂事件的概率通常有两种方法
(1)将所求事件转化成几个彼此互斥的事件的和事件;
(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”,它常用来求“至少……”或“至多……”型事件的概率.
[活学活用]
某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示.现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率.
解:分别令“抽取一名队员只属于篮球队、羽毛球队、乒乓球队”为事件A,B,C.由图知3支球队共有球员20名.
则P(A)=,P(B)=,P(C)=.
(1)令“抽取一名队员,该队员只属于一支球队”为事件D.
则D=A+B+C,∵事件A,B,C两两互斥,
∴P(D)=P(A+B+C)=P(A)+P(B)+P(C)
=++=.
(2)令“抽取一名队员,该队员最多属于两支球队”为事件E,
则为“抽取一名队员,该队员属于3支球队”,
∴P(E)=1-P()=1-=.
[层级一 学业水平达标]
1.许洋说:“本周我至少做完三套练习题.”设许洋所说的事件为A,则A的对立事件为( )
A.至多做完三套练习题 B.至多做完二套练习题
C.至多做完四套练习题 D.至少做完三套练习题
解析:选B 至少做完3套练习题包含做完3,4,5,6…套练习题,故它的对立事件为做完0,1,2套练习题,即至多做完2套练习题.
2.把红、蓝、黑、白4张纸牌随机地分给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )
A.对立事件 B.互斥但不对立事件
C.不可能事件 D.以上说法都不对
解析:选B 因为只有1张红牌,所以这两个事件不可能同时发生,所以它们是互斥事件;但这两个事件加起来并不是总体事件,所以它们不是对立事件.
3.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )
A. B.
C. D.
解析:选D 记3个红球分别为a1,a2,a3,2个白球分别为b1,b2.从3个红球、2个白球中任取3个,则所包含的基本事件有(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),(a1,b1,b2),(a2,b1,b2),(a3,b1,b2),共10个.由于每个基本事件发生的机会均等,因此这些基本事件的发生是等可能的.
用A表示“所取的3个球中至少有1个白球”,则其对立事件表示“所取的3个球中没有白球”,则事件包含的基本事件有1个:(a1,a2,a3),所以P()=.故P(A)=1-P()=1-=.
4.事件A,B互斥,它们都不发生的概率为,且P(A)=2P(B),则P(A)=________.
解析:因为事件A,B互斥,它们都不发生的概率为,所以P(A)+P(B)=1-=.又因为P(A)=2P(B),
所以P(A)+P(A)=,
所以P(A)=.
答案:
[层级二 应试能力达标]
1.若P(A+B)=P(A)+P(B)=1,则事件A与B的关系是( )
A.互斥不对立 B.对立不互斥
C.互斥且对立 D.以上说法都不对
答案:C
2.若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是( )
A.[0,0.9] B.[0.1,0.9]
C.(0,0.9] D.[0,1]
解析:选A 由于事件A和B是互斥事件,则P(A∪B)=P(A)+P(B)=0.1+P(B),又0≤P(A∪B)≤1,所以0≤0.1+P(B)≤1,又P(B)≥0,所以0≤P(B)≤0.9,故选A.
3.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A+B)=( )
A. B.
C. D.1
解析:选B A包含向上点数是1,3,5的情况,B包含向上的点数是1,2,3的情况,所以A+B包含了向上点数是1,2,3,5的情况.故P(A+B)==.
4.从1,2,3,…,30这30个数中任意摸出一个数,则事件“摸出的数是偶数或能被5整除的数”的概率是( )
A. B.
C. D.
解析:选B 这30个数中“是偶数”的有15个,“能被5整除的数”有6个,这两个事件不互斥,既是偶数又能被5整除的数有3个,所以事件“是偶数或能被5整除的数”包含的基本事件数是18个,而基本事件共有30个,所以所求的概率为=.
5.抛掷一粒骰子,观察掷出的点数,设事件A为“出现奇数点”,事件B为“出现2点”,已知P(A)=,P(B)=,则“出现奇数点或2点”的概率为________.
解析:“出现奇数点”的概率为P(A),“出现2点”的概率为P(B),且事件A与B互斥,则“出现奇数点或2点”的概率为P(A+B)=P(A)+P(B)=+=.
答案:
6.某一时期内,一条河流某处的最高水位在各个范围内的概率如下:
最高水位/m
[8,10)
[10,12)
[12,14)
概率
0.2
0.3
0.5
则在同一时期内,河流在这一处的最高水位不超过12 m的概率为________.
解析:法一:记“最高水位在[8,10)内”为事件A1,记“最高水位在[10,12)内”为事件A2,记“最高水位不超过12 m”为事件A3,由题意知,事件A1,A2彼此互斥,而事件A3包含基本事件A1,A2,所以P(A3)=P(A1)+P(A2)=0.2+0.3=0.5.
法二:记“最高水位在[12,14)内”为事件B1,记“最高水位不超过12 m”为事件B2,由题意知,事件B1和B2互为对立事件,所以P(B2)=1-P(B1)=1-0.5=0.5.
答案:0.5
7.围棋盒子中有多粒黑子和多粒白子,已知从中取出2粒都是黑子的概率为,从中取出2粒都是白子的概率是.那么,现从中任意取出2粒恰好是同一色的概率是________.
解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A+B,且事件A与B互斥.所以P(C)=P(A)+P(B)=+=,即“任意取出2粒恰好是同一色”的概率为.
答案:
8.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为不合格.假设此人对A和B两种饮料没有鉴别能力.
(1)求此人被评为优秀的概率;
(2)求此人被评为良好及以上的概率.
解:将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),共有10种.
令D表示此人被评为优秀的事件,E表示此人被评为良好的事件,F表示此人被评为良好及以上的事件.则
(1)P(D)=.
(2)P(E)=,P(F)=P(D)+P(E)=.
9.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解:(1)由题意知,(a,b,c)所有的可能结果为
(1,1,1),(1,1,2),(1,1,3),(1,2,1),
(1,2,2),(1,2,3),(1,3,1),(1,3,2),
(1,3,3),(2,1,1),(2,1,2),(2,1,3),
(2,2,1),(2,2,2),(2,2,3),(2,3,1),
(2,3,2),(2,3,3),(3,1,1),(3,1,2),
(3,1,3),(3,2,1),(3,2,2),(3,2,3),
(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.
∴P(A)==.
即“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B的对立事件包括(1,1,1),(2,2,2),(3,3,3),共3种.
∴P(B)=1-P()=1-=.
即“抽取的卡片上的数字a,b,c不完全相同”的概率为.
课时跟踪检测(十八) 互斥事件
1.若P(A+B)=P(A)+P(B)=1,则事件A与B的关系是( )
A.互斥不对立 B.对立不互斥
C.互斥且对立 D.以上说法都不对
答案:C
2.若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是( )
A.[0,0.9] B.[0.1,0.9]
C.(0,0.9] D.[0,1]
解析:选A 由于事件A和B是互斥事件,则P(A∪B)=P(A)+P(B)=0.1+P(B),又0≤P(A∪B)≤1,所以0≤0.1+P(B)≤1,又P(B)≥0,所以0≤P(B)≤0.9,故选A.
3.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A+B)=( )
A. B.
C. D.1
解析:选B A包含向上点数是1,3,5的情况,B包含向上的点数是1,2,3的情况,所以A+B包含了向上点数是1,2,3,5的情况.故P(A+B)==.
4.从1,2,3,…,30这30个数中任意摸出一个数,则事件“摸出的数是偶数或能被5整除的数”的概率是( )
A. B.
C. D.
解析:选B 这30个数中“是偶数”的有15个,“能被5整除的数”有6个,这两个事件不互斥,既是偶数又能被5整除的数有3个,所以事件“是偶数或能被5整除的数”包含的基本事件数是18个,而基本事件共有30个,所以所求的概率为=.
5.抛掷一粒骰子,观察掷出的点数,设事件A为“出现奇数点”,事件B为“出现2点”,已知P(A)=,P(B)=,则“出现奇数点或2点”的概率为________.
解析:“出现奇数点”的概率为P(A),“出现2点”的概率为P(B),且事件A与B互斥,则“出现奇数点或2点”的概率为P(A+B)=P(A)+P(B)=+=.
答案:
6.某一时期内,一条河流某处的最高水位在各个范围内的概率如下:
最高水位/m
[8,10)
[10,12)
[12,14)
概率
0.2
0.3
0.5
则在同一时期内,河流在这一处的最高水位不超过12 m的概率为________.
解析:法一:记“最高水位在[8,10)内”为事件A1,记“最高水位在[10,12)内”为事件A2,记“最高水位不超过12 m”为事件A3,由题意知,事件A1,A2彼此互斥,而事件A3包含基本事件A1,A2,所以P(A3)=P(A1)+P(A2)=0.2+0.3=0.5.
法二:记“最高水位在[12,14)内”为事件B1,记“最高水位不超过12 m”为事件B2,由题意知,事件B1和B2互为对立事件,所以P(B2)=1-P(B1)=1-0.5=0.5.
答案:0.5
7.围棋盒子中有多粒黑子和多粒白子,已知从中取出2粒都是黑子的概率为,从中取出2粒都是白子的概率是.那么,现从中任意取出2粒恰好是同一色的概率是________.
解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A+B,且事件A与B互斥.所以P(C)=P(A)+P(B)=+=,即“任意取出2粒恰好是同一色”的概率为.
答案:
8.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为不合格.假设此人对A和B两种饮料没有鉴别能力.
(1)求此人被评为优秀的概率;
(2)求此人被评为良好及以上的概率.
解:将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),共有10种.
令D表示此人被评为优秀的事件,E表示此人被评为良好的事件,F表示此人被评为良好及以上的事件.则
(1)P(D)=.
(2)P(E)=,P(F)=P(D)+P(E)=.
9.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解:(1)由题意知,(a,b,c)所有的可能结果为
(1,1,1),(1,1,2),(1,1,3),(1,2,1),
(1,2,2),(1,2,3),(1,3,1),(1,3,2),
(1,3,3),(2,1,1),(2,1,2),(2,1,3),
(2,2,1),(2,2,2),(2,2,3),(2,3,1),
(2,3,2),(2,3,3),(3,1,1),(3,1,2),
(3,1,3),(3,2,1),(3,2,2),(3,2,3),
(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.
∴P(A)==.
即“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B的对立事件包括(1,1,1),(2,2,2),(3,3,3),共3种.
∴P(B)=1-P()=1-=.
即“抽取的卡片上的数字a,b,c不完全相同”的概率为.