备考2019中考数学高频考点剖析
专题二十四 平面几何之与圆的位置关系问题
考点扫描☆聚焦中考
与圆的位置关系,是每年中考的必考重点内容之一,重点考查的知识点包括切线的性质和切线的判定两方面,总体来看,难度系数中等,以选择填空为主。解析题重点进行证明为主。结合2018年全国各地中考的实例,我们从三方面进行与圆的位置关系问题的探讨:
(1)切线的性质;
(2)切线的判定;
(3)涉及圆与直线位置关系的综合问题.
考点剖析☆典型例题
例1如图,AB是⊙O的直径,CD是⊙O的切线,C为切点,∠B=25°,则∠D等于( )
A. 25° B. 50° C.30° D. 40°
例2(2018·广西梧州·10分)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.
(1)求证:△ABE∽△BCD;
(2)若MB=BE=1,求CD的长度.
例3如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
例4如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以1cm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为cm,AC=8cm,设运动时间为t秒.
(1)求证:NQ=MQ;
(2)填空:
①当t=________时,四边形AMQN为菱形;
②当t=________时,NQ与⊙O相切.
考点过关☆专项突破
类型一 切线的性质
1. 如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D, 若 =80°, =60°,则∠ADC的度数为(??? )
A.?80°???????B.?85°?????C.?90°???????D.?95°
2. (2018·台湾·分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?( )
A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB
3. 已知⊙O与直线l相切于A点,点P、Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动.连接OQ、OP(如图),则阴影部分面积S1、S2的大小关系是( )
A.S1=S2 B.S1≤S2 C.S1≥S2 D.先S1<S2,再S1=S2,最后S1>S2
4. 如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是( )
A.MN= B.若MN与⊙O相切,则AM=
C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切
5.(2019杭州萧山区模拟)如图,动点O从边长为6的等边△ABC的顶点A出发,沿着A→C→B→A的路线匀速运动一周,速度为1个单位长度每秒.以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是点O出发后第 秒.
6. (2018·浙江省台州·5分)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D= 度.
7. (2018年江苏省泰州市?3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为 .
8. (2019杭州萧山区模拟)如图,在△ABC中,AB=AC,以AC为直经作⊙O交BC与D点,过点D作⊙O的切线EF,交AB于点E,交AC的延长线于点F.
(1)求证:FE⊥AB.
(2)当AE=6,AF=10时,求BE的长.
类型二 切线的判定
1. (2018·广西贺州·10分)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.
(1)求证:BD是⊙O的切线;
(2)若AB=12,DB=5,求△AOB的面积.
2.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.
(1)如图1,若∠PCB=∠A.
①求证:直线PC是⊙O的切线;
②若CP=CA,OA=2,求CP的长;
(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN?MC=9,求BM的值.
3.(2018·辽宁省盘锦市)如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.
(1)求证:BC是⊙O的切线;
(2)若AC=3,求⊙O的半径r;
(3)在(1)的条件下,判断以A.O、E.F为顶点的四边形为哪种特殊四边形,并说明理由.
4. 如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F
(1)求∠EDF的度数;
(2)若AD=6,求△AEF的周长;
(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
5. (2018·山东潍坊·8分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=2,AC=2,求AD的长.
6. (2018年江苏省南京市)结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,
求△ABC的面积.
解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=AC?BC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?
请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若AC?BC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
类型三 直线与圆的位置关系的综合问题
1.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了 s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.
2.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.
(1)求证:EF⊥AC.
(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.
3.已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK;
(2)如果AB=a,AD=(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
备考2019中考数学高频考点剖析
专题二十四 平面几何之与圆的位置关系问题
考点扫描☆聚焦中考
与圆的位置关系,是每年中考的必考重点内容之一,重点考查的知识点包括切线的性质和切线的判定两方面,总体来看,难度系数中等,以选择填空为主。解析题重点进行证明为主。结合2018年全国各地中考的实例,我们从三方面进行与圆的位置关系问题的探讨:
(1)切线的性质;
(2)切线的判定;
(3)涉及圆与直线位置关系的综合问题.
考点剖析☆典型例题
例1如图,AB是⊙O的直径,CD是⊙O的切线,C为切点,∠B=25°,则∠D等于( )
A. 25° B. 50° C.30° D. 40°
考点: 切线的性质;圆周角定理.
分析: 根据已知条件推出CD⊥OC,∠COD=2∠B=50°,即可推出∠D=40°.
解答: 解:如右图,连接OC,
∵AB是⊙O的直径,CD是⊙O的切线,
∴CD⊥OC,
∵∠B=25°,
∴∠AOC=50°,
∴∠D=40°.
故选D.
点评: 本题主要考查了圆周角定理、切线的性质,解题的关键是求出∠AOC的度数.
例2(2018·广西梧州·10分)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.
(1)求证:△ABE∽△BCD;
(2)若MB=BE=1,求CD的长度.
【分析】(1)根据直径所对圆周角和切线性质,证明三角形相似;
(2)利用勾股定理和面积法得到AG、GE,根据三角形相似求得GH,得到MB.GH和CD的数量关系,求得CD.
【解答】(1)证明:∵BC为⊙M切线
∴∠ABC=90°
∵DC⊥BC
∴∠BCD=90°
∴∠ABC=∠BCD
∵AB是⊙M的直径
∴∠AGB=90°
即:BG⊥AE
∴∠CBD=∠A
∴△ABE∽△BCD
(2)解:过点G作GH⊥BC于H
∵MB=BE=1
∴AB=2
∴AE=
由(1)根据面积法
AB?BE=BG?AE
∴BG=
由勾股定理:
AG=,GE=
∵GH∥AB
∴
∴
∴GH=
又∵GH∥AB
①
同理:②
①+②,得
∴
∴CD=
【点评】本题是几何综合题,综合考察了圆周角定理、切线性质和三角形相似.解答时,注意根据条件构造相似三角形.
例3如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
考点: 切线的性质;相似三角形的判定与性质;锐角三角函数的定义.
专题: 几何图形问题;压轴题.
分析: (1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.
解答: 解:连接OA、OB、OP,延长BO交PA的延长线于点F.
∵PA,PB切⊙O于A、B两点,CD切⊙O于点E
∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,
∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,
∴PA=PB=.
在Rt△PBF和Rt△OAF中,
,
∴Rt△PBF∽Rt△OAF.
∴===,
∴AF=FB,
在Rt△FBP中,
∵PF2﹣PB2=FB2
∴(PA+AF)2﹣PB2=FB2
∴(r+BF)2﹣()2=BF2,
解得BF=r,
∴tan∠APB===,
故选:B.
点评: 本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.
例4如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以1cm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为cm,AC=8cm,设运动时间为t秒.
(1)求证:NQ=MQ;
(2)填空:
①当t=________时,四边形AMQN为菱形;
②当t=________时,NQ与⊙O相切.
【答案】 (1)解:证明:∵AB⊥MN,
∴PM=PN
∴AB垂直平分MN,
∴NQ=MQ
(2);2
【考点】菱形的判定,垂径定理,相似三角形的判定与性质,几何图形的动态问题
【解析】【解答】(2)解:①AP=t,CQ=t,则PQ=8﹣t﹣t=8﹣2t,
∵AQ⊥MN,PM=PN,
∴当AP=PQ时,四边形AMQM为菱形,
即t=8﹣2t,解得t= ;
②作OH⊥QN于H,如图,
OQ=AC﹣AO﹣CQ=8﹣﹣t=﹣t,OP=t﹣,
当ON⊥QN时,QN为⊙O的切线,
∵∠NOQ=∠PON,
∴△ONP∽△OQN,
∴OP:ON=ON:OQ,
即(t-):=:( ﹣t),
整理得t2﹣8t+12=0,解得t1=2,t2=6(舍去),
∴t=2时,NQ与⊙O相切
【分析】(1)先利用垂径定理证得PM=PN,则AB垂直平分MN,然后利用线段垂直平分线的性质可证得结论。
(2)①AP=t,CQ=t,可用含t的代数式表示出PQ,根据菱形的判定方法,当AP=PQ时,四边形AMQM为菱形,可建立关于t的方程,解方程即可;②作OH⊥QN于H,用含t的代数式分别表示出OQ、OP,再证明△ONP∽△OQN,利用相似三角形的性质,可证得OP:ON=ON:OQ,据此建立关于t的方程,解方程即可得出符合题意的t的值。
考点过关☆专项突破
类型一 切线的性质
1. 如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D, 若 =80°, =60°,则∠ADC的度数为(??? )
A.?80°???????B.?85°?????C.?90°???????D.?95°
【考点】平行线的判定与性质,圆周角定理,切线的性质
【分析】作直径AE,构造直径所对的圆周角是直角,结合弧的度数可知所对圆周角的度数,从而可得AE∥CD,再利用切线的性质即可解答。
【解析】【解答】解:作直径AE交圆与E,连接EC,则∠ACE=90° ∵ =80°, ∴∠ACB=40°, 又∵ CD平分∠ACB, ∴∠ACD=20°, 又∵ =60°, ∴∠AEC=, ∴∠EAC=90°-70°=20°, ∴∠EAC=∠ACD, ∴AE∥CD, 又∵ 直线l与圆相切于点A, ∴AE⊥AD, ∴CD⊥AD, ∴∠ADC=90°。 故答案为:C2. (2018·台湾·分)如图,两圆外切于P点,且通过P点的公切线为L,过P点作两直线,两直线与两圆的交点为A、B、C、D,其位置如图所示,若AP=10,CP=9,则下列角度关系何者正确?( )
A.∠PBD>∠PAC B.∠PBD<∠PAC C.∠PBD>∠PDB D.∠PBD<∠PDB
【分析】根据大边对大角,平行线的判定和性质即可判断;
【解答】解:如图,∵直线l是公切线
∴∠1=∠B,∠2=∠A,
∵∠1=∠2,
∴∠A=∠B,
∴AC∥BD,
∴∠C=∠D,
∵PA=10,PC=9,
∴PA>PC,
∴∠C>∠A,
∴∠D>∠B.
故选:D.
【点评】本题考查圆与圆的位置关系,直线与圆的位置关系,相切两个圆的性质等知识,解题的关键是证明AC∥BD.
3. 已知⊙O与直线l相切于A点,点P、Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动.连接OQ、OP(如图),则阴影部分面积S1、S2的大小关系是( )
A.S1=S2 B.S1≤S2 C.S1≥S2 D.先S1<S2,再S1=S2,最后S1>S2
【考点】切线的性质;扇形面积的计算.
【分析】由题意得到弧AQ长度与AP相等,利用扇形面积公式及三角形面积公式得到扇形AOQ面积与三角形AOP面积相等,都减去扇形AOB面积即可得到S1、S2的大小关系.
【解答】解:∵直线l与圆O相切,
∴OA⊥AP,
∴S扇形AOQ=??r=??OA,S△AOP=OA?AP,
∵=AP,
∴S扇形AOQ=S△AOP,即S扇形AOQ﹣S扇形AOB=S△AOP﹣S扇形AOB,
则S1=S2.
故选A.
4. 如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是( )
A.MN= B.若MN与⊙O相切,则AM=
C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切
【解答】解:连结OA、OB,如图1,
∵⊙O与l1和l2分别相切于点A和点B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴点A、O、B共线,
∴AB为⊙O的直径,
∴l1和l2的距离为2;故C正确,
作NH⊥AM于H,如图1,
则MH=AB=2,
∵∠AMN=60°,
∴sin60°=,
∴MN==;故A正确,
当MN与⊙O相切,如图2,连结OM,ON,
当MN在AB左侧时,∠AMO=∠AMN=×60°=30°,
在Rt△AMO中,tan∠AMO=,即AM==,
在Rt△OBN中,∠ONB=∠BNM=60°,tan∠ONB=,即BN==,
当MN在AB右侧时,AM=,
∴AM的长为或;故B错误,
当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,如图2,
∵OA=OB,
∴Rt△OAF≌Rt△OBN,
∴OF=ON,
∴MO垂直平分NF,
∴OM平分∠NMF,
∴OE=OA,
∴MN为⊙O的切线.故D正确.
故选:B.
5. .(2019杭州萧山区模拟)如图,动点O从边长为6的等边△ABC的顶点A出发,沿着A→C→B→A的路线匀速运动一周,速度为1个单位长度每秒.以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是点O出发后第 秒.
【分析】若以O为圆心,以为半径的圆在运动过程中与△ABC的边第二次相切,即为当点O在AC上,且和BC边相切的情况.作O′D⊥BC于D,则O′D=,利用解直角三角形的知识,进一步求得O′C=2,从而求得OA的长,进一步求得运动时间.
【解答】解:根据题意,则作O′D⊥BC于D,
则O′D=,
在直角三角形O′CD中,∠C=60°,O′D=,
∴O′C=2,
∴O′A=6﹣2=4,
∴以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第4秒.
故答案为:4.
【点评】本题考查了直线和圆相切时数量之间的关系的应用,能够正确分析出以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时的位置是解此题的关键,此题是一道中档题目,难度适中.
6. (2018·浙江省台州·5分)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D= 26 度.
【分析】连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.
【解答】解:连接OC,
由圆周角定理得,∠COD=2∠A=64°,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠D=90°﹣∠COD=26°,
故答案为:26.
【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
7. (2018年江苏省泰州市?3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为 或 .
【分析】分两种情形分别求解:如图1中,当⊙P与直线AC相切于点Q时,如图2中,当⊙P与AB相切于点T时,
【解答】解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.
设PQ=PA′=r,
∵PQ∥CA′,
∴=,
∴=,
∴r=.
如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,
∵△A′BT∽△ABC,
∴=,
∴=,
∴A′T=,
∴r=A′T=.
综上所述,⊙P的半径为或.
【点评】本题考查切线的性质、勾股定理、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
8. (2019杭州萧山区模拟)如图,在△ABC中,AB=AC,以AC为直经作⊙O交BC与D点,过点D作⊙O的切线EF,交AB于点E,交AC的延长线于点F.
(1)求证:FE⊥AB.
(2)当AE=6,AF=10时,求BE的长.
【分析】(1)连接OD,由EF为⊙O的切线,利用切线的性质得到OD与EF垂直,利用同圆的半径相等和等边对等角得到OD∥AB,由与平行线中的一条直线垂直,与另一条也垂直,即可得证;
(2)如图2,连接OD,过O作OG⊥AB于G,先根据勾股定理求EF=8,根据三角函数tan∠F===,设OD=3x,DF=4x,则OF=5x,表示AG=,根据AE=6,列方程3x+=6,可得x的值,计算BE的长.
【解答】证明:(1)如图1,连接OD,…(1分)
∵OC=OD,
∴∠ODC=∠OCD,
又∵AB=AC,
∴∠OCD=∠B,
∴∠ODC=∠B,
∴OD∥AB,…
∵ED是⊙O的切线,OD是⊙O的半径,
∴OD⊥EF,
∴AB⊥EF;…
(2)如图2,连接OD,过O作OG⊥AB于G,
Rt△AEF中,∵AE=6,AF=10,
∴EF=8,…(5分)
tan∠F===,
设OD=3x,DF=4x,则OF=5x,
∴OA=OC=3x,FC=2x,
∵OG∥EF,
∴∠AOG=∠F,
∴sin∠AOG=sin∠F=,
∴=,
∴AG=,…(8分)
∵四边形EDOG为矩形,
∴EG=OD=3x,
∵AE=6,
∴3x+=6,
x=,
∴BE=AB﹣AE=AC﹣AE=6x﹣6=6×﹣6=.…
【点评】此题考查了切线的性质,勾股定理,平行线的判定与性质,锐角三角函数定义,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.
类型二 切线的判定
1. (2018·广西贺州·10分)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.
(1)求证:BD是⊙O的切线;
(2)若AB=12,DB=5,求△AOB的面积.
【解答】(1)证明:∵OA=OB,DB=DE,
∴∠A=∠OBA,∠DEB=∠DBE,
∵EC⊥OA,∠DEB=∠AEC,
∴∠A+∠DEB=90°,
∴∠OBA+∠DBE=90°,
∴∠OBD=90°,
∵OB是圆的半径,
∴BD是⊙O的切线;
(2)过点D作DF⊥AB于点F,连接OE,
∵点E是AB的中点,AB=12,
∴AE=EB=6,OE⊥AB,
又∵DE=DB,DF⊥BE,DB=5,DB=DE,
∴EF=BF=3,
∴DF==4,
∵∠AEC=∠DEF,
∴∠A=∠EDF,
∵OE⊥AB,DF⊥AB,
∴∠AEO=∠DFE=90°,
∴△AEO∽△DFE,
∴,
即,得EO=4.5,
∴△AOB的面积是:=27.
2.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.
(1)如图1,若∠PCB=∠A.
①求证:直线PC是⊙O的切线;
②若CP=CA,OA=2,求CP的长;
(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN?MC=9,求BM的值.
【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;
②想办法证明∠P=30°即可解决问题;
(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;
【解答】(1)①证明:如图1中,
∵OA=OC,
∴∠A=∠ACO,
∵∠PCB=∠A,
∴∠ACO=∠PCB,
∵AB是⊙O的直径,
∴∠ACO+∠OCB=90°,
∴∠PCB+∠OCB=90°,即OC⊥CP,
∵OC是⊙O的半径,
∴PC是⊙O的切线.
②∵CP=CA,
∴∠P=∠A,
∴∠COB=2∠A=2∠P,
∵∠OCP=90°,
∴∠P=30°,
∵OC=OA=2,
∴OP=2OC=4,
∴.
(2)解:如图2中,连接MA.
∵点M是弧AB的中点,
∴=,
∴∠ACM=∠BAM,
∵∠AMC=∠AMN,
∴△AMC∽△NMA,
∴,
∴AM2=MC?MN,
∵MC?MN=9,
∴AM=3,
∴BM=AM=3.
【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.
3.(2018·辽宁省盘锦市)如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.
(1)求证:BC是⊙O的切线;
(2)若AC=3,求⊙O的半径r;
(3)在(1)的条件下,判断以A.O、E.F为顶点的四边形为哪种特殊四边形,并说明理由.
【解答】解:(1)如图1,连接OE,∴OA=OE,∴∠BAE=∠OEA.
∵∠BAE=30°,∴∠OEA=30°,∴∠AOE=∠BAE+∠OEA=60°.在△BOE中,∠B=30°,∴∠OEB=180°﹣∠B﹣∠BOE=90°,∴OE⊥BC.
∵点E在⊙O上,∴BC是⊙O的切线;
(2)如图21∠B=∠BAE=30°,∴∠AEC=∠B+∠BAE=60°.在Rt△ACE中,AC=3,sin∠AEC=,∴AE===2,连接DE1AD是⊙O的直径,∴∠AED=90°.在Rt△ADE中,∠BAE=30°,cos∠DAE=,∴AD===4,∴⊙O的半径r=AD=2;
(3)以A.O、E.F为顶点的四边形是菱形,理由:如图3.在Rt△ABC中,∠B=30°,∴∠BAC=60°,连接OF,∴OA=OF,∴△AOF是等边三角形,∴OA=AF,∠AOF=60°,连接EF,OE,∴OE=OF.
∵∠OEB=90°,∠B=30°,∴∠AOE=90°+30°=120°,∴∠EOF=∠AOE﹣∠AOF=60°.
∵OE=OF,∴△OEF是等边三角形,∴OE=EF.
∵OA=OE,∴OA=AF=EF=OE,∴四边形OAFE是菱形.
4. 如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F
(1)求∠EDF的度数;
(2)若AD=6,求△AEF的周长;
(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.
【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF的度数即可解决问题;
(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK=EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;
(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN即可解决问题;
【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.
∵AD是正△ABC的高,
∴∠BAC=60°,AD平分∠BAC,
∴∠BAD=∠CAD=30°,
∵OI⊥AB于I,OJ⊥AC于J,
∴∠AIO=∠AJO=90°,
∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,
∵OE=OF,
∴Rt△OIE≌△Rt△OJF(HL),
∴∠IOE=∠JOF,
∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,
∴∠EDF=∠EOF=60°.
(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.
∵△ABC是等边三角形,AD⊥BC,
∴∠B=60°,BD=CD,
∵∠EDF=60°,
∴∠EDF=∠B,
∵∠EDC=∠EDF+∠CDF=∠B+∠BED,
∴∠BED=∠CDF,
∵GD是圆O的直径,
∴∠ADC=90°,∠GFD=90°,
∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,
∴∠FDC=∠FGD=∠DEF,
∵DK⊥EB,DM⊥EF,
∴∠EKD=∠EMD=90°,DK=DM,
∴Rt△DEK≌Rt△DEM(HL),
∴∴EK=EM,
同法可证:DK=DL,
∴DM=CL,
∵DM⊥FE,DL⊥FC,
∴∠FMD=∠FLD=90°,
∴Rt△DFM≌Rt△DFL(HL),
∴FM=FL,
∵AD=AD,DK=DF,
∴Rt△ADK≌Rt△ADL(HL),
∴AK=AL,
∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,
∵AD=6,
∴AL=AD?cos30°=9,
∴△AEF的周长=18.
(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.
在Rt△AEM中,∵AE=3,∠EAM=60°,
∴AM=AE=,EM=,
在Rt△EFM中,EF===,
∴AF=AM+MF=8,
∵△AEF的周长=18,
由(2)可知2AL=18,
∴AJ=9,AD==6,
∴AP=AF=4,FP=4,
∵NQ∥FP,
∵△EQN∽△EPF,
∴==,
∵∠BAD=30°,
∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,
∴AE=11x=3,
∴x=,
∴AN=2NQ=,
∴DN=AD﹣AN=.
【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
5. (2018·山东潍坊·8分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=2,AC=2,求AD的长.
【分析】(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
【解答】证明:(1)连接OA,交BC于F,则OA=OB,
∴∠D=∠DAO,
∵∠D=∠C,
∴∠C=∠DAO,
∵∠BAE=∠C,
∴∠BAE=∠DAO,(2分)
∵BD是⊙O的直径,
∴∠BAD=90°,
即∠DAO+∠BAO=90°,(3分)
∴∠BAE+∠BAO=90°,即∠OAE=90°,
∴AE⊥OA,
∴AE与⊙O相切于点A;(4分)
(2)∵AE∥BC,AE⊥OA,
∴OA⊥BC,(5分)
∴,FB=BC,
∴AB=AC,
∵BC=2,AC=2,
∴BF=,AB=2,
在Rt△ABF中,AF==1,
在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
∴OB=4,(7分)
∴BD=8,
∴在Rt△ABD中,AD====2.(8分)
【点评】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.
6. (2018年江苏省南京市)结果如此巧合!
下面是小颖对一道题目的解答.
题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,
求△ABC的面积.
解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.
根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=AC?BC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?
请你帮她完成下面的探索.
已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.
可以一般化吗?
(1)若∠C=90°,求证:△ABC的面积等于mn.
倒过来思考呢?
(2)若AC?BC=2mn,求证∠C=90°.
改变一下条件……
(3)若∠C=60°,用m、n表示△ABC的面积.
【分析】(1)由切线长知AE=AD=m、BF=BD=n、CF=CE=x,根据勾股定理得(x+m)2+(x+n)2=(m+n)2,即x2+(m+n)x=mn,再利用三角形的面积公式计算可得;
(2)由由AC?BC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求证即可;
(3)作AG⊥BC,由三角函数得AG=AC?sin60°=(x+m),CG=AC?cos60°=(x+m)、BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面积公式计算可得.
【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,
根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,
(1)如图1,
在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,
整理,得:x2+(m+n)x=mn,
所以S△ABC=AC?BC
=(x+m)(x+n)
= [x2+(m+n)x+mn]
=(mn+mn)
=mn,
(2)由AC?BC=2mn,得:(x+m)(x+n)=2mn,
整理,得:x2+(m+n)x=mn,
∴AC2+BC2=(x+m)2+(x+n)2
=2[x2+(m+n)x]+m2+n2
=2mn+m2+n2
=(m+n)2
=AB2,
根据勾股定理逆定理可得∠C=90°;
(3)如图2,过点A作AG⊥BC于点G,
在Rt△ACG中,AG=AC?sin60°=(x+m),CG=AC?cos60°=(x+m),
∴BG=BC﹣CG=(x+n)﹣(x+m),
在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,
整理,得:x2+(m+n)x=3mn,
∴S△ABC=BC?AG
=×(x+n)?(x+m)
= [x2+(m+n)x+mn]
=×(3mn+mn)
=mn.
【点评】本题主要考查圆的综合问题,解题的关键是掌握切线长定理的运用、三角函数的应用及勾股定理及其逆定理等知识点.
类型三 直线与圆的位置关系的综合问题
1.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了 s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.
【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.
【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,
此时,CF=1.5,
∵AC=2t,BD=t,
∴OC=8﹣2t,OD=6﹣t,
∵点E是OC的中点,
∴CE=OC=4﹣t,
∵∠EFC=∠O=90°,∠FCE=∠DCO
∴△EFC∽△DCO
∴=
∴EF===
由勾股定理可知:CE2=CF2+EF2,
∴(4﹣t)2=+,
解得:t=或t=,
∵0≤t≤4,
∴t=.
故答案为:
【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.
2.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.
(1)求证:EF⊥AC.
(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.
【分析】(1)连接OE,如图,先证明OE∥AC,再利用切线的性质得OE⊥EF,从而得到EF⊥AC;
(2)连接DE,如图,设.⊙O的半径长为r,利用圆周角定理得到∠BED=90°,则DE=BD=r,BE=r,再证明∠EDF=90°,∠DFE=60°,接着用r表示出DF=r,EF=r,CE=r,
从而得到r+r=2,然后解方程即可.
【解答】(1)证明:连接OE,如图,
∵OB=OE,
∴∠B=∠OEB,
∵AB=AC,
∴∠B=∠C,
∴∠OEB=∠C,
∴OE∥AC,
∵EF为切线,
∴OE⊥EF,
∴EF⊥AC;
(2)解:连接DE,如图,设.⊙O的半径长为r,
∵BD为直径,
∴∠BED=90°,
在Rt△BDE中,∵∠B=30°,
∴DE=BD=r,BE=r,
∵DF∥BC,
∴∠EDF=∠BED=90°,
∵∠C=∠B=30°,
∴∠CEF=60°,
∴∠DFE=∠CEF=60°,
在Rt△DEF中,DF=r,
∴EF=2DF=r,
在Rt△CEF中,CE=2EF=r,
而BC=2,
∴r+r=2,解得r=,
即⊙O的半径长为.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和垂径定理.
3.已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK;
(2)如果AB=a,AD=(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
考点: 相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理;垂径定理.
【解析】:(1)根据ABCD是矩形,求证△BKC≌△ADE即可;
(2)根据勾股定理求得AC的长,根据三角形的面积公式得出AB×BC=AC×BK,代入即可求得BK.
(3)根据三角形中位线定理可求出EF,再利用△AFD≌△HBF可求出HF,然后即可求出GH;利用射影定理求出AE,再利△AED∽△HEC求证AE=AC,然后即可求得AC即可.
【解答】: (1)证明:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠DAE=∠BCK,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK;
(2)解:∵AB=a,AD==BC,
∴AC===
∵BK⊥AC,∠ABC=90°,
∴在Rt△ABC中,由三角形的面积公式得:AB×BC=AC×BK,
∴a×a=a×BK,
∴BK=a.
(3)解:DG是圆的弦,又有AE⊥GD得GE=ED,
∵DE=6,
∴GE=6,
又∵F为EG中点,
∴EF=EG=3,
∵△BKC≌△DEA,
∴BK=DE=6,
∴EF=BK,且EF∥BK,
∴△AEF∽△AKB,且相似比为1:2,
∴EF为△ABK的中位线,
∴AF=BF,
又∵∠ADF=∠H,∠DAF=∠HBF=90°,
∴△AFD≌△BFH(AAS),
∴HF=DF=3+6=9,
∴GH=6,
∵DH∥KB,BK⊥AC,四边形ABCD为矩形,
∴∠AEF=∠DEA=90°,
∴∠FAE+∠DAE=∠FAE+∠AFE=90°,
∴∠AFE=∠DAE,
∴△AEF∽△DEA,
∴AE:ED=EF:AE,
∴AE2=EF?ED=3×6=18,
∴AE=3,
∵△AED∽△HEC,
∴==,
∴AE=AC,
∴AC=9,
则AO=,
故⊙O的半径是,GH的长是6.
点评: 此题主要考查相似三角形的判定与性质,全等三角形的判定与性质,三角形中位线定理,垂径定理等知识点,综合性很强,利用学生系统的掌握知识,是一道很典型的题目.