2019年数学人教B版必修3新设计同步(讲义+课件+课时跟踪检测):第三章 3.1 3.1.3 频率与概率

文档属性

名称 2019年数学人教B版必修3新设计同步(讲义+课件+课时跟踪检测):第三章 3.1 3.1.3 频率与概率
格式 zip
文件大小 769.4KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-04-29 09:38:52

文档简介

3.1.3 频率与概率
预习课本P95~97,思考并完成以下问题
(1)什么叫事件A的概率?其范围是什么?
 
 
 
(2)频率和概率有何关系?
 
 

1.概率的统计定义
在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率.记作P(A),范围0≤P(A)≤1.
2.频率与概率的关系
概率可以通过频率来“测量”或者说频率是概率的一个近似,概率从数量上反映了一个事件发生的可能性的大小.

1.某人将一枚硬币连抛20次,正面朝上的情况出现了12次,若用A表示事件“正面向上”,则A的(  )
A.频率为      B.概率为
C.频率为12 D.概率接近
答案:A
2.某医院治疗一种疾病的治愈率为,前4个病人都没有治好,第5个病人的治愈率为(  )
A.1 B.
C. D.0
答案:B
3.某商品的合格率为99%,某人购买这种商品100件,他认为这100件商品中一定有1件是不合格的,这种认识是________的(填“合理”或“不合理”).
答案:不合理
概率的定义
[典例] 解释下列概率的含义.
(1)某厂生产产品的合格率为0.9;
(2)一次抽奖活动中,中奖的概率为0.2.
[解] (1)“某厂生产产品的合格率为0.9”.说明该厂产品合格的可能性为90%,也就是说100件该厂的产品中大约有90件是合格的.
(2)“中奖的概率为0.2”说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100人参加抽奖,约有20人中奖.
三个方面理解概率
(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值.
(2)由概率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.
(3)正确理解概率的意义,要清楚与频率的区别与联系,对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件. 
[活学活用]
1.下列说法正确的是(  )
A.由生物学知道生男、生女的概率均约为0.5,一对夫妇先后生两小孩,则一定为一男一女
B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖
C.10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大
D.10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1
解析:选D 一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确,D正确.
2.某工厂生产的产品合格率是99.99%,这说明(  )
A.该厂生产的10 000件产品中不合格的产品一定有1件
B.该厂生产的10 000件产品中合格的产品一定有9 999件
C.合格率是99.99%,很高,说明该厂生产的10 000件产品中没有不合格产品
D.该厂生产的产品合格的可能性是99.99%
解析:选D 合格率是99.99%,是指该工厂生产的每件产品合格的可能性大小,即合格的概率.
利用频率与概率的关系求概率
[典例] 某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如表所示:
分组
[500,900)
[900,1 100)
[1 100,1 300)
频数
48
121
208
频率
[1 300,1 500)
[1 500,1 700)
[1 700,1 900)
[1 900,+∞)
223
193
165
42
(1)求各组的频率;
(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
[解] (1)频率依次是:0.048,0.121,0.208,0.223,0.193,0.165,0.042.
(2)样本中寿命不足1 500小时的频数是48+121+208+223=600,
所以样本中寿命不足1 500小时的频率是=0.6.
即灯管使用寿命不足1 500小时的概率约为0.6.
随机事件概率的理解及求法
(1)理解:概率可看作频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小.当试验的次数越来越多时,频率越来越趋近于概率.当次数足够多时,所得频率就近似地看作随机事件的概率.
(2)求法:通过公式fn(A)==计算出频率,再由频率估算概率. 
[活学活用]
国家乒乓球比赛的用球有严格标准,下面是有关部门对某乒乓球生产企业某批次产品的抽样检测,结果如表所示:
抽取球数目
50
100
200
500
1 000
2 000
优等品数目
45
92
194
470
954
1 902
优等品频率
(1)计算表中优等品的各个频率;
(2)从这批产品中任取一个乒乓球,质量检测为优等品的概率约是多少?
解:(1)如表所示:
抽取球数目
50
100
200
500
1 000
2 000
优等品数目
45
92
194
470
954
1 902
优等品频率
0.9
0.92
0.97
0.94
0.954
0.951
(2)根据频率与概率的关系,可以认为从这批产品中任取一个乒乓球,质量检测为优等品的概率约是0.95.
[层级一 学业水平达标]
1.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是(  )
A.           B.
C. D.
解析:选D 抛掷一枚质地均匀的硬币,只考虑第999次,有两种结果:正面朝上,反面朝上,每种结果等可能出现,故所求概率为.
2.在一次摸彩票中奖活动中,一等奖奖金为10 000元,某人摸中一等奖的概率是0.001,这是指(  )
A.这个人抽1 000次,必有1次中一等奖
B.这个人每抽一次,就得奖金10 000×0.001=10元
C.这个人抽一次,抽中一等奖的可能性是0.001
D.以上说法都不正确
解析:选C 摸一次彩票相当于做一次试验,某人摸中一等奖的概率是0.001,只能说明这个人抽一次,抽中一等奖的可能性是0.001,而不能说这个人抽1 000次,必有1次中一等奖,也不能说这个人每抽一次,就得奖金10 000×0.001=10元.
3.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是________.
解析:P==0.03.
答案:0.03
4.某射击运动员进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
129
121
击中飞碟的频率
(1)将各次记录击中飞碟的频率填入表中;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数100,击中飞碟数是81,故击中飞碟的频率是=0.81,同理可求得之后的频率依次约为0.792,0.820,0.820,0.793,0.806,0.807.
(2)击中飞碟的频率稳定在0.81附近,故这个运动员击中飞碟的概率约为0.81.
[层级二 应试能力达标]
1.事件A发生的概率接近于0,则(  )
A.事件A不可能发生  B.事件A也可能发生
C.事件A一定发生 D.事件A发生的可能性很大
解析:选B 不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件.
2.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话(  )
A.正确 B.错误
C.不一定 D.无法解释
解析:选B 把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确.
3.下列说法正确的是(  )
A.事件A的概率为P(A),必有0B.事件A的概率P(A)=0.999,则事件A是必然事件
C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效.现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%
D.某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖
解析:选C A不正确,因为0≤P(A)≤1;若A是必然事件,则P(A)=1,故B不正确;对于D,奖券的中奖率为50%,若某人购买此奖券10张,则可能会有5张中奖,所以D不正确.故选C.
4.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?(  )
A.甲公司 B.乙公司
C.甲、乙公司均可 D.以上都对
解析:选B 由题意得肇事车是甲公司的概率为,是乙公司的概率为,可以认定肇事车为乙公司的车辆较为合理.
5.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.
解析:设总体中的个体数为x,则=,所以x=120.
答案:120
6.某工厂为了节约用电,规定每天的用电量指标为1 000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.
解析:由频率的定义可知用电量超过指标的频率为=0.4,由频率估计概率知第一天用电量超过指标的概率约是0.4.
答案:0.4
7.投掷硬币的结果如下表:
投掷硬币的次数
200
500
c
正面向上的次数
102
b
404
正面向上的频率
a
0.482
0.505
则a=________,b=________,c=________.
据此可估计若掷硬币一次,正面向上的概率为________.
解析:a==0.51,b=500×0.482=241;
c==800.
易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.
答案:0.51 241 800 0.5
8.某水产试验厂实行某种鱼的人工孵化,10 000 个鱼卵能孵化8 513 尾鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000 个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5 000 尾鱼苗,大概需备多少个鱼卵?(精确到百位)
解:(1)这种鱼卵的孵化概率P==0.851 3.
(2)30 000个鱼卵大约能孵化
30 000×=25 539(尾)鱼苗.
(3)设大概需备x个鱼卵,由题意知=.
所以x=≈5 900(个).
所以大概需备5 900个鱼卵.
9.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解:(1)因为20×400=8 000,
所以摸到红球的频率为:=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.
所以估计袋中红球接近15个.
课件22张PPT。
“层级二 应试能力达标”见“课时跟踪检测(十六)”
(单击进入电子文档)
课时跟踪检测(十六) 频率与概率
1.事件A发生的概率接近于0,则(  )
A.事件A不可能发生  B.事件A也可能发生
C.事件A一定发生 D.事件A发生的可能性很大
解析:选B 不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件.
2.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话(  )
A.正确 B.错误
C.不一定 D.无法解释
解析:选B 把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确.
3.下列说法正确的是(  )
A.事件A的概率为P(A),必有0B.事件A的概率P(A)=0.999,则事件A是必然事件
C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效.现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%
D.某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖
解析:选C A不正确,因为0≤P(A)≤1;若A是必然事件,则P(A)=1,故B不正确;对于D,奖券的中奖率为50%,若某人购买此奖券10张,则可能会有5张中奖,所以D不正确.故选C.
4.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?(  )
A.甲公司 B.乙公司
C.甲、乙公司均可 D.以上都对
解析:选B 由题意得肇事车是甲公司的概率为,是乙公司的概率为,可以认定肇事车为乙公司的车辆较为合理.
5.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.
解析:设总体中的个体数为x,则=,所以x=120.
答案:120
6.某工厂为了节约用电,规定每天的用电量指标为1 000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.
解析:由频率的定义可知用电量超过指标的频率为=0.4,由频率估计概率知第一天用电量超过指标的概率约是0.4.
答案:0.4
7.投掷硬币的结果如下表:
投掷硬币的次数
200
500
c
正面向上的次数
102
b
404
正面向上的频率
a
0.482
0.505
则a=________,b=________,c=________.
据此可估计若掷硬币一次,正面向上的概率为________.
解析:a==0.51,b=500×0.482=241;
c==800.
易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.
答案:0.51 241 800 0.5
8.某水产试验厂实行某种鱼的人工孵化,10 000 个鱼卵能孵化8 513 尾鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000 个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5 000 尾鱼苗,大概需备多少个鱼卵?(精确到百位)
解:(1)这种鱼卵的孵化概率P==0.851 3.
(2)30 000个鱼卵大约能孵化
30 000×=25 539(尾)鱼苗.
(3)设大概需备x个鱼卵,由题意知=.
所以x=≈5 900(个).
所以大概需备5 900个鱼卵.
9.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解:(1)因为20×400=8 000,
所以摸到红球的频率为:=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.
所以估计袋中红球接近15个.