2019年数学浙江专版选修2-3新一线同步(讲义+课件+课时跟踪检测):第二章 2.4 2.4.2 事件的相互独立性(24张)

文档属性

名称 2019年数学浙江专版选修2-3新一线同步(讲义+课件+课时跟踪检测):第二章 2.4 2.4.2 事件的相互独立性(24张)
格式 zip
文件大小 778.0KB
资源类型 教案
版本资源 其它版本
科目 数学
更新时间 2019-04-28 16:14:33

文档简介

2.4.2 事件的相互独立性
预习课本P54~55,思考并完成以下问题
1.事件的相互独立性的定义是什么?性质是什么?
 
 
 
2.相互独立事件与互斥事件的区别?
 
 
 
    
事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.
(2)性质:A与B是相互独立事件,则也相互独立.
[点睛] 相互独立事件与互斥事件的区别
相互独立事件
互斥事件
条件
事件A(或B)是否发生对事件B(或A)发生的概率没有影响
不可能同时发生的两个事件
符号
相互独立事件A,B同时发生,记作:AB
互斥事件A,B中有一个发生,记作:A∪B(或A+B)
计算公式
P(AB)=P(A)P(B)
P(A∪B)=P(A)+P(B)

1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)不可能事件与任何一个事件相互独立.(  )
(2)必然事件与任何一个事件相互独立.(  )
(3)如果事件A与事件B相互独立,则P(B|A)=P(B).(  )
(4)“P(AB)=P(A)·P(B)”是“事件A,B相互独立”的充要条件.(  )
答案:(1)√ (2)√ (3)√ (4)√
2.甲、乙两水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7.那么,在一次预报中,甲、乙两站预报都准确的概率为________.
答案:0.56
3.一件产品要经过两道独立的工序, 第一道工序的次品率为a, 第二道工序的次品率为b, 则该产品的正品率为________.
答案:(1-a)(1-b)
4.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(A)=________,P(AB)=________.
答案: 

事件独立性的判断
[典例] 判断下列事件是否为相互独立事件.
(1)甲组3名男生, 2名女生; 乙组2名男生, 3名女生,现从甲、乙两组中各选1名同学参加演讲比赛, “从甲组中选出1名男生”与“从乙组中选出1名女生”.
(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.
[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件是否发生没有影响,所以它们是相互独立事件.
(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.
两个事件是否相互独立的判断
(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.
(2)定义法:如果事件A,B同时发生的概率等于事件A发生的概率与事件B发生的概率的积,则事件A,B为相互独立事件.
(3)条件概率法:当P(A)>0时,可用P(B|A)=P(B)判断.      
[活学活用]
把一颗质地均匀的骰子任意地掷一次,判断下列各组事件是否是独立事件?
(1)A={掷出偶数点},B={掷出奇数点};
(2)A={掷出偶数点},B={掷出3的倍数点};
(3)A={掷出偶数点},B={掷出的点数小于4}.
解:(1)∵P(A)=,P(B)=,P(AB)=0,
∴A与B不是相互独立事件.
(2)∵P(A)=,P(B)=,P(AB)=,
∴P(AB)=P(A)·P(B),
∴A与B是相互独立事件.
(3)∵P(A)=,P(B)=,P(AB)=,
∴P(AB)≠P(A)·P(B),
∴A与B不是相互独立事件.
相互独立事件概率的计算
[典例] 根据资料统计, 某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.6, 购买甲、乙保险相互独立, 各车主间相互独立.
(1)求一位车主同时购买甲、乙两种保险的概率;
(2)求一位车主购买乙种保险但不购买甲种保险的概率.
[解] 记A表示事件“购买甲种保险”,B表示事件“购买乙种保险”,则由题意得A与B,A与,与B,与都是相互独立事件,且P(A)=0.5,P(B)=0.6.
(1)记C表示事件“同时购买甲、乙两种保险”,
则C=AB,所以P(C)=P(AB)=P(A)·P(B)=0.5×0.6=0.3.
(2)记D表示事件“购买乙种保险但不购买甲种保险”,
则D=B,所以P(D)=P(B)=P()·P(B)=(1-0.5)×0.6=0.3.
[一题多变]
1.[变设问]本例中车主至少购买甲、乙两种保险中的一种的概率是多少?
解:法一:记E表示事件“至少购买甲、乙两种保险中的一种”,则事件E包括B,A,AB,且它们彼此为互斥事件.
所以P(E)=P(B+A+AB)=P(B)+P(A)+P(AB) =0.5×0.6+0.5×0.4+0.5×0.6=0.8.
法二:事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件.
所以P(E)=1-P(AB)=1-(1-0.5)×(1-0.6)=0.8.
2.[变条件,变设问]某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响.
(1)求这名同学得300分的概率;
(2)求这名同学至少得300分的概率.
解:记“这名同学答对第i个问题”为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.
(1)这名同学得300分的概率
P1=P(A12A3)+P(1A2A3)
=P(A1)P(2)P(A3)+P(1)P(A2)P(A3)
=0.8×0.3×0.6+0.2×0.7×0.6=0.228.
(2)这名同学至少得300分的概率P2=P1+P(A1A2A3)=0.228+0.8×0.7×0.6=0.564.
(1)求相互独立事件同时发生的概率的步骤是:
①首先确定各事件之间是相互独立的;
②确定这些事件可以同时发生;
③求出每个事件的概率,再求积.
(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.    
相互独立事件概率的实际应用
[典例] 三个元件T1,T2,T3正常工作的概率分别为,,,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.
[解] 记“三个元件T1,T2,T3正常工作”分别为事件A1,A2,A3,则P(A1)=,P(A2)=,P(A3)=.
不发生故障的事件为(A2∪A3)A1,
∴不发生故障的概率为
P=P[(A2∪A3)A1]
=P(A2∪A3)·P(A1)
=[1-P(2)·P(3)]·P(A1)
=×=.
求较为复杂事件的概率的方法
(1)列出题中涉及的各事件,并且用适当的符号表示;
(2)理清事件之间的关系(两事件是互斥还是对立.或者是相互独立),列出关系式;
(3)根据事件之间的关系准确选取概率公式进行计算;
(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.      
[活学活用]
某校田径队有三名短跑运动员,根据平时的训练情况统计,甲、乙、丙三人100 m跑(互不影响)的成绩在13 s内(称为合格)的概率分别是,,,如果对这三名短跑运动员的100 m跑成绩进行一次检测.
(1)三人都合格的概率与三人都不合格的概率分别是多少?
(2)出现恰有几人合格的概率最大?
解:设“甲、乙、丙三人100 m跑合格”分别为事件A,B,C,
显然A,B,C相互独立,P(A)=,P(B)=,P(C)=,所以P()=1-=,P()=1-=,P()=1-=.
设恰有k人合格的概率为Pk(k=0,1,2,3).
(1)三人都合格的概率为
P3=P(ABC)=P(A)P(B)P(C)=××=.
三人都不合格的概率为P0=P()=P()P()P()=××=.
所以三人都合格的概率与三人都不合格的概率都是.
(2)因为AB,AC,BC两两互斥,所以恰有两人合格的概率为:P2=P(AB+AC+BC)
=P(AB)+P(AC)+P(BC)
=P(A)P(B)P()+P(A)P()P(C)+P()P(B)P(C)
=××+××+××=.
恰有一人合格的概率为P1=1-P0-P2-P3=1---==.
由(1)(2)知P0,P1,P2,P3中P1最大,所以出现恰有一人合格的概率最大.
层级一 学业水平达标
1.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是(  )
A.互斥事件       B.相互独立事件
C.对立事件 D.不相互独立事件
解析:选D 根据互斥事件、对立事件和相互独立事件的定义可知,A与B不是相互独立事件.故选D.
2.若P(AB)=,P()=,P(B)=,则事件A与B的关系是(  )
A.事件A与B互斥 B.事件A与B对立
C.事件A与B相互独立 D.事件A与B既互斥又独立
解析:选C 因为P()=,所以P(A)=,又P(B)=,P(AB)=,所以有P(AB)=P(A)P(B),所以事件A与B相互独立但不一定互斥.
3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是(  )
A. B.
C. D.
解析:选A 由题意知P甲==,P乙=,所以P=P甲·P乙=.
4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是(  )
A.0.56    B.0.92   C.0.94   D.0.96
解析:选C 设事件A表示:“甲击中”,事件B表示:“乙击中”.由题意知A,B互相独立.故目标被击中的概率为P=1-P(·)=1-P()P()=1-0.2×0.3=0.94.
5.从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于(  )
A.2个球不都是红球的概率
B.2个球都是红球的概率
C.至少有1个红球的概率
D.2个球中恰好有1个红球的概率
解析:选C 至少有1个红球的概率是×+×+×=.
6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.
解析:所求概率P=0.8×0.1+0.2×0.9=0.26.
答案:0.26
7.已知P(A)=0.3,P(B)=0.5,当事件A,B相互独立时,P(A∪B)=________,P(A|B)=________.
解析:∵A,B相互独立,∴P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65. P(A|B)=P(A)=0.3.
答案:0.65 0.3
8.设两个相互独立的事件A,B都不发生的概率为,A发生B不发生的概率等于B发生A不发生的概率,则事件A发生的概率P(A)=________.
解析:由已知可得
解得P(A)=P(B)=.
答案:
9.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为和.求:
(1)甲、乙两个气象台同时预报天气准确的概率.
(2)至少有一个气象台预报准确的概率.
解:记“甲气象台预报天气准确”为事件A,“乙气象台预报天气准确”为事件B.显然事件A,B相互独立且P(A)=,P(B)=.
(1)P(AB)=P(A)P(B)=×=.
(2)至少有一个气象台预报准确的概率为
P=1-P(AB)=1-P()P()=1-×=.
10.已知A,B,C为三个独立事件,若事件A发生的概率是,事件B发生的概率是,事件C发生的概率是,求下列事件的概率:
(1)事件A,B,C只发生两个;
(2)事件A,B,C至多发生两个.
解:(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,A·B·;A··C;·B·C,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P(A1)=P(A·B·)+P(A··C)+P(·B·C)=++=,∴事件A,B,C只发生两个的概率为.
(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,故P(A2)=P(A3)+P(A4)+P(A5)=++=.
∴事件A,B,C至多发生两个的概率为.
层级二 应试能力达标
1.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为(  )
A.0.12         B.0.88
C.0.28 D.0.42
解析:选D P=(1-0.3)(1-0.4)=0.42.
2.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是(  )
A. B.
C. D.
解析:选A 设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=,B表示“第二个圆盘的指针落在奇数所在的区域”,则P(B)=.故P(AB)=P(A)·P(B)=×=.
3.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是(  )
A. B. 
C.  D. 
解析:选A 按A→B→C→A的顺序的概率为××=,按A→C→B→A的顺序的概率为××=,故跳三次之后停在A叶上的概率为P=+=.
4.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为(  )
A. B.
C. D.
解析:选C 记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P()P()[1-P(AB)]=××=.∴灯亮的概率为1-=.
5.加工某零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________.
解析:加工出来的零件的正品率为××=,所以次品率为1-=.
答案:
6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.
答案:0.128
7.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6,0.4,0.5,0.2.已知各轮问题能否正确回答互不影响.
(1)求该选手被淘汰的概率;
(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率.
解:记“该选手能正确回答第i轮的问题”为事件Ai(i=1,2,3,4),
则P(A1)=0.6,P(A2)=0.4,P(A3)=0.5,P(A4)=0.2.
(1)法一:该选手被淘汰的概率:
P=P(1∪A12∪A1A23∪A1A2A34)
=P(1)+P(A1)P(2)+P(A1)P(A2)P(3)+
P(A1)P(A2)P(A3)P(4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.
法二:P=1-P(A1A2A3A4)=1-P(A1)P(A2)·P(A3)·P(A4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.
(2)法一:P=P(A12∪A1A23∪A1A2A34)=P(A1)P(2)+P(A1)P(A2)P(3)+P(A1)P(A2)P(A3)P(4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.
法二:P=1-P(1)-P(A1A2A3A4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576.
8.某学生语、数、英三科竞赛成绩,排名全班第一的概率为:语文为0.9,数学为0.8,英语为0.85,问一次考试中:
(1)三科成绩均未获得第一名的概率是多少?
(2)恰有一科成绩未获得第一名的概率是多少?
解:分别记“该生语、数、英竞赛成绩排名全班第一”为事件A,B,C,则P(A)=0.9,P(B)=0.8,P(C)=0.85.
(1)该学生三科成绩均未获得第一名的概率
P1=P(  )=P()P()P()
=[1-P(A)][1-P(B)][1-P(C)]
=0.1×0.2×0.15=0.003.
(2)该学生恰有一科成绩未获得第一名的概率
P2=P(BC+A C+AB )
=P( BC)+P(A C)+P(AB )
=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()
=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]
=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329.
课件24张PPT。
“多练提能·熟生巧”见“课时跟踪检测(十五)”
(单击进入电子文档)
课时跟踪检测(十五) 事件的相互独立性
层级一 学业水平达标
1.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是(  )
A.互斥事件       B.相互独立事件
C.对立事件 D.不相互独立事件
解析:选D 根据互斥事件、对立事件和相互独立事件的定义可知,A与B不是相互独立事件.故选D.
2.若P(AB)=,P()=,P(B)=,则事件A与B的关系是(  )
A.事件A与B互斥 B.事件A与B对立
C.事件A与B相互独立 D.事件A与B既互斥又独立
解析:选C 因为P()=,所以P(A)=,又P(B)=,P(AB)=,所以有P(AB)=P(A)P(B),所以事件A与B相互独立但不一定互斥.
3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是(  )
A. B.
C. D.
解析:选A 由题意知P甲==,P乙=,所以P=P甲·P乙=.
4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是(  )
A.0.56    B.0.92   C.0.94   D.0.96
解析:选C 设事件A表示:“甲击中”,事件B表示:“乙击中”.由题意知A,B互相独立.故目标被击中的概率为P=1-P(·)=1-P()P()=1-0.2×0.3=0.94.
5.从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于(  )
A.2个球不都是红球的概率
B.2个球都是红球的概率
C.至少有1个红球的概率
D.2个球中恰好有1个红球的概率
解析:选C 至少有1个红球的概率是×+×+×=.
6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.
解析:所求概率P=0.8×0.1+0.2×0.9=0.26.
答案:0.26
7.已知P(A)=0.3,P(B)=0.5,当事件A,B相互独立时,P(A∪B)=________,P(A|B)=________.
解析:∵A,B相互独立,∴P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65. P(A|B)=P(A)=0.3.
答案:0.65 0.3
8.设两个相互独立的事件A,B都不发生的概率为,A发生B不发生的概率等于B发生A不发生的概率,则事件A发生的概率P(A)=________.
解析:由已知可得
解得P(A)=P(B)=.
答案:
9.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为和.求:
(1)甲、乙两个气象台同时预报天气准确的概率.
(2)至少有一个气象台预报准确的概率.
解:记“甲气象台预报天气准确”为事件A,“乙气象台预报天气准确”为事件B.显然事件A,B相互独立且P(A)=,P(B)=.
(1)P(AB)=P(A)P(B)=×=.
(2)至少有一个气象台预报准确的概率为
P=1-P(AB)=1-P()P()=1-×=.
10.已知A,B,C为三个独立事件,若事件A发生的概率是,事件B发生的概率是,事件C发生的概率是,求下列事件的概率:
(1)事件A,B,C只发生两个;
(2)事件A,B,C至多发生两个.
解:(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,A·B·;A··C;·B·C,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P(A1)=P(A·B·)+P(A··C)+P(·B·C)=++=,∴事件A,B,C只发生两个的概率为.
(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,故P(A2)=P(A3)+P(A4)+P(A5)=++=.
∴事件A,B,C至多发生两个的概率为.
层级二 应试能力达标
1.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为(  )
A.0.12         B.0.88
C.0.28 D.0.42
解析:选D P=(1-0.3)(1-0.4)=0.42.
2.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是(  )
A. B.
C. D.
解析:选A 设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=,B表示“第二个圆盘的指针落在奇数所在的区域”,则P(B)=.故P(AB)=P(A)·P(B)=×=.
3.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是(  )
A. B. 
C.  D. 
解析:选A 按A→B→C→A的顺序的概率为××=,按A→C→B→A的顺序的概率为××=,故跳三次之后停在A叶上的概率为P=+=.
4.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为(  )
A. B.
C. D.
解析:选C 记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P()P()[1-P(AB)]=××=.∴灯亮的概率为1-=.
5.加工某零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________.
解析:加工出来的零件的正品率为××=,所以次品率为1-=.
答案:
6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.
答案:0.128
7.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6,0.4,0.5,0.2.已知各轮问题能否正确回答互不影响.
(1)求该选手被淘汰的概率;
(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率.
解:记“该选手能正确回答第i轮的问题”为事件Ai(i=1,2,3,4),
则P(A1)=0.6,P(A2)=0.4,P(A3)=0.5,P(A4)=0.2.
(1)法一:该选手被淘汰的概率:
P=P(1∪A12∪A1A23∪A1A2A34)
=P(1)+P(A1)P(2)+P(A1)P(A2)P(3)+
P(A1)P(A2)P(A3)P(4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.
法二:P=1-P(A1A2A3A4)=1-P(A1)P(A2)·P(A3)·P(A4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.
(2)法一:P=P(A12∪A1A23∪A1A2A34)=P(A1)P(2)+P(A1)P(A2)P(3)+P(A1)P(A2)P(A3)P(4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.
法二:P=1-P(1)-P(A1A2A3A4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576.
8.某学生语、数、英三科竞赛成绩,排名全班第一的概率为:语文为0.9,数学为0.8,英语为0.85,问一次考试中:
(1)三科成绩均未获得第一名的概率是多少?
(2)恰有一科成绩未获得第一名的概率是多少?
解:分别记“该生语、数、英竞赛成绩排名全班第一”为事件A,B,C,则P(A)=0.9,P(B)=0.8,P(C)=0.85.
(1)该学生三科成绩均未获得第一名的概率
P1=P(  )=P()P()P()
=[1-P(A)][1-P(B)][1-P(C)]
=0.1×0.2×0.15=0.003.
(2)该学生恰有一科成绩未获得第一名的概率
P2=P(BC+A C+AB )
=P( BC)+P(A C)+P(AB )
=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()
=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]
=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329.
同课章节目录