2019年数学浙江专版选修2-2新一线同步(讲义+课件+课时跟踪检测):阶段质量检测(一) 导数及其应用 (部分)

文档属性

名称 2019年数学浙江专版选修2-2新一线同步(讲义+课件+课时跟踪检测):阶段质量检测(一) 导数及其应用 (部分)
格式 zip
文件大小 51.6KB
资源类型 教案
版本资源 其它版本
科目 数学
更新时间 2019-04-28 16:13:17

图片预览

文档简介

阶段质量检测(一) 导数及其应用 (部分)
(时间: 120分钟 满分:150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以正弦曲线y=sin x上一点P为切点的切线为直线l,则直线l的倾斜角的范围是(  )
A.∪     B.[0,π)
C. D.∪
解析:选A y′=cos x,∵cos x∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是∪.
2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(   )
A.1个 B.2个
C.3个 D.4个
解析:选A 设极值点依次为x1,x2,x3且a<x1<x2<x3<b,则f(x)在(a,x1),(x2,x3)上递增,在(x1,x2),(x3,b)上递减,因此,x1,x3是极大值点,只有x2是极小值点.
3.函数f(x)=x2-ln x的单调递减区间是(  )
A. 
B.
C. ,
D.,
解析:选A ∵f′(x)=2x-=,当0<x≤时,f′(x)≤0,故f(x)的单调递减区间为.
4.函数f(x)=3x-4x3(x∈[0,1])的最大值是(  )
A.1 B.
C.0 D.-1
解析:选A f′(x)=3-12x2,令f′(x)=0,
则x=-(舍去)或x=,f(0)=0,f(1)=-1,
f=-=1,∴f(x)在[0,1]上的最大值为1.
5.已知函数f(x)的导函数f′(x)=a(x-b)2+c的图象如图所示,则函数f(x)的图象可能是(  )
解析:选D 由导函数图象可知,当x<0时,函数f(x)递减,排除A、B;当00,函数f(x)递增.因此,当x=0时,f(x)取得极小值,故选D.
6.定义域为R的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>,则满足2f(x)A.{x|-1C.{x|x<-1或x>1} D.{x|x>1}
解析:选B 令g(x)=2f(x)-x-1,∵f′(x)>,
∴g′(x)=2f′(x)-1>0,∴g(x)为单调增函数,
∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴当x<1时,
g(x)<0,即2f(x)7.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2,生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,应生产(  )
A.6千台 B.7千台
C.8千台 D.9千台
解析:选A 设利润为y,则y=y1-y2=17x2-(2x3-x2)=18x2-2x3,y′=36x-6x2,令y′=0得x=6或x=0(舍),f(x)在(0,6)上是增函数,在(6,+∞)上是减函数,∴x=6时y取得最大值.
8.已知定义在R上的函数f(x),f(x)+x·f′(x)<0,若a<b,则一定有(  )
A.af(a)<bf(b) B.af(b)<bf(a)
C.af(a)>bf(b) D.af(b)>bf(a)
解析:选C [x·f(x)]′=x′f(x)+x·f′(x)=f(x)+x·f′(x)<0,
∴函数x·f(x)是R上的减函数,
∵a<b,∴af(a)>bf(b).
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中横线上)
9.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3处取得极值,则a=________.
解析:f′(x)=3x2+2ax+3,∵f′(-3)=0.
∴3×(-3)2+2a×(-3)+3=0,∴a=5.
答案:5
10.若f(x)=x3-f′(1)x2+x+5,则f′(1)=________,f′(2)=________.
解析:f′(x)=x2-2f′(1)x+1,令x=1,得f′(1)=,∴f′(2)=22-2××2+1=.
答案: 
11.函数y=ln(x2-x-2)的定义域为________,单调递减区间为________.
解析:由题意,x2-x-2>0,解得x<-1或x>2,故函数y=ln(x2-x-2)的定义域为(-∞,-1)∪(2,+∞),
令f(x)=x2-x-2,f′(x)=2x-1<0,得x<,
∴函数y=ln(x2-x-2)的单调递减区间为(-∞,-1).
答案:(-∞,-1)∪(2,+∞) (-∞,-1)
12.函数y=x3-6x+a的极大值为________,极小值为________.
解析:y′=3x2-6=3(x+)(x-),
令y′>0,得x>或x<-,
令y′<0,得-<x<,
∴当x=-时取得极大值a+4,
当x=时取得极小值a-4.
答案:a+4 a-4
13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=________,b=________.
解析:y′=3x2+2ax+b,方程y′=0有根-1及3,
由根与系数的关系得,
∴
答案:-3 -9
14.已知函数f(x)满足f(x)=f(π-x),且当x∈时,f(x)=x+sin x,设a=f(1),b=f(2),c=f(3),则a,b,c的大小关系是________.
解析:f(2)=f(π-2),f(3)=f(π-3),
因为f′(x)=1+cos x≥0,
故f(x)在上是增函数,
∵>π-2>1>π-3>0,
∴f(π-2)>f(1)>f(π-3),即c答案:c15.若函数f(x)=在区间(m,2m+1)上单调递增,则实数m的取值范围是__________.
解析:f′(x)=,令f′(x)>0,得-1<x<1,
即函数f(x)的增区间为(-1,1).
又f(x)在(m,2m+1)上单调递增,
所以解得-1<m≤0.
答案:(-1,0]
三、解答题(本大题共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
解:(1)f′(x)=3ax2+2bx-3,依题意,
f′(1)=f′(-1)=0,即
解得a=1,b=0.
∴f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1).
令f′(x)=0,得x=-1或x=1.
若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,
故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上是增函数.
若x∈(-1,1),则f′(x)<0,故f(x)在(-1,1)上是减函数.
∴f(-1)=2是极大值;f(1)=-2是极小值.
(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x-3x0.
∵f′(x0)=3(x-1),
故切线的方程为y-y0=3(x-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x-3x0)=3(x-1)(0-x0).
化简得x=-8,解得x0=-2.
∴切点为M(-2,-2),切线方程为9x-y+16=0.
17. (本小题满分15分)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值;
(2)求f(x)的单调区间.
解:(1)因为f(x)=xea-x+bx,
所以f′(x)=(1-x)ea-x+b.
依题设有即
解得
(2)由(1)知f(x)=xe2-x+ex.
由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,
f′(x)与1-x+ex-1同号.
令g(x)=1-x+ex-1,则g′(x)=-1+ex-1.
所以当x∈(-∞,1)时,g′(x)<0,
g(x)在区间(-∞,1)上单调递减;
当x∈(1,+∞)时,g′(x)>0,
g(x)在区间(1,+∞)上单调递增.
故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,
从而g(x)>0,x∈(-∞,+∞).
综上可知,f′(x)>0,x∈(-∞,+∞),
故f(x)的单调递增区间为(-∞,+∞).
18.(本小题满分15分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.
(1)求a,b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.
解:(1)由投资额为零时收益为零,
可知f(0)=-a+2=0,g(0)=6ln b=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
设投入经销B商品的资金为x万元(0<x≤5),
则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,
则S(x)=2(5-x)+6ln(x+1)
=6ln(x+1)-2x+10(0<x≤5).
S′(x)=-2,令S′(x)=0,得x=2.
当0<x<2时,S′(x)>0,函数S(x)单调递增;
当2<x≤5时,S′(x)<0,函数S(x)单调递减.
所以当x=2时,函数S(x)取得最大值,
S(x)max=S(2)=6ln 3+6≈12.6万元.
所以,当投入经销A商品3万元,B商品2万元时,
他可获得最大收益,收益的最大值约为12.6万元.
19.(本小题满分15分)已知函数f(x)=ax2+2ln(1-x)(a为常数).
(1)若f(x)在x=-1处有极值,求a的值并判断x=-1是极大值点还是极小值点;
(2)若f(x)在[-3,-2]上是增函数,求a的取值范围.
解:(1)f′(x)=2ax-,x∈(-∞,1),
f′(-1)=-2a-1=0,
所以a=-.
f′(x)=-x-=.
∵x<1,∴1-x>0,x-2<0,
因此,当x<-1时f′(x)>0,
当-1∴x=-1是f(x)的极大值点.
(2)由题意f′(x)≥0在x∈[-3,-2]上恒成立,
即2ax-≥0在x∈[-3,-2]上恒成立
∴a≤在x∈[-3,-2]上恒成立,
∵-x2+x=-2+ ∈[-12,-6],
∴∈,
∴min=-,a≤-.
即a的取值范围为.
20.(本小题满分15分)已知函数f(x)=x+(t>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).
(1)求证:x1,x2为关于x的方程x2+2tx-t=0的两根;
(2)设|MN|=g(t),求函数g(t)的表达式;
(3)在(2)的条件下,若在区间[2,16]内总存在m+1个实数a1,a2,…,am+1(可以相同),使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
解:(1)证明:由题意可知:y1=x1+,y2=x2+
∵f′(x)=1-,
∴切线PM的方程为:y-=(x-x1),
又∵切线PM过点P(1,0),
∴0-=(1-x1),
即x+2tx1-t=0,①
同理,由切线PN也过点P(1,0),
得x+2tx2-t=0.②
由①②,可得x1,x2是方程x2+2tx-t=0(*)的两根
(2)由(*)知
|MN|=
=
=,
∴g(t)=(t>0).
(3)易知g(t)在区间[2,16]上为增函数,
∴g(2)≤g(ai)≤g(16)(i=1,2,…,m+1),
则m·g(2)≤g(a1)+g(a2)+…+g(am)<g(am+1)≤g(16).
即m·g(2)<g(16),
即m<,
所以m< ,由于m为正整数,所以m≤6.
又当m=6时,存在a1=a2=…=a6=2,a7=16满足条件,所以m的最大值为6.
同课章节目录