2019年数学浙江专版选修2-2新一线同步(讲义+课件+课时跟踪检测):第一章 1.4 生活中的优化问题举例(23张)

文档属性

名称 2019年数学浙江专版选修2-2新一线同步(讲义+课件+课时跟踪检测):第一章 1.4 生活中的优化问题举例(23张)
格式 zip
文件大小 779.5KB
资源类型 教案
版本资源 其它版本
科目 数学
更新时间 2019-04-28 16:48:02

文档简介

 
几何中的最值问题
[典例] 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截下的小正方形边长应为多少?
[解] 设截下的小正方形边长为x,容器容积为V(x),则做成的长方体形无盖容器底面边长为a-2x,高为x,
V(x)=(a-2x)2x,0即V(x)=4x3-4ax2+a2x,0实际问题归结为求V(x)在区间上的最大值点.
为此,先求V(x)的极值点.在开区间内,
V′(x)=12x2-8ax+a2.
令V′(x)=0,得12x2-8ax+a2=0.
解得x1=a,x2=a(舍去).
x1=a在区间内,x1可能是极值点.且
当00;
当x1因此x1是极大值点,且在区间内,x1是唯一的极值点,所以x=a是V(x)的最大值点.
即当截下的小正方形边长为a时,容积最大.
1.利用导数解决实际问题中的最值的一般步骤
(1)分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值;
(4)把所得数学结论回归到数学问题中,看是否符合实际情况并下结论.
2.几何中最值问题的求解思路
面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.      
[活学活用]
1.已知圆柱的表面积为定值S,当圆柱的容积V最大时,圆柱的高h的值为________.
解析:设圆柱的底面半径为r,
则S圆柱底=2πr2,
S圆柱侧=2πrh,
∴圆柱的表面积S=2πr2+2πrh.
∴h=,
又圆柱的体积V=πr2h=(S-2πr2)=,
V′(r)=,
令V′(r)=0得S=6πr2,∴h=2r,因为V′(r)只有一个极值点,故当h=2r时圆柱的容积最大.
又r=,∴h=2=.
即当圆柱的容积V最大时,圆柱的高h为.
答案:
2.将一段长为100 cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截可使正方形与圆面积之和最小?
解:设弯成圆的一段长为x(0<x<100),另一段长为100-x,记正方形与圆的面积之和为S,则S=π2+2(0<x<100),则S′=-(100-x).
令S′=0,则x=.
由于在(0,100)内函数只有一个导数为零的点,问题中面积之和最小值显然存在,故当x= cm时,面积之和最小.
故当截得弯成圆的一段长为 cm时,两种图形面积之和最小.
用料、费用最少问题
[典例] 某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
[解]  (1)设需新建n个桥墩,则(n+1)x=m,
即n=-1.
所以y=f(x)=256n+(n+1)(2+)x
=256+(2+)x
=+m+2m-256.
(2)由(1)知,f′(x)=-+mx-=(x-512).令f′(x)=0,得x=512,所以x=64.
当0当640,f(x)在区间(64,640)内为增函数,
所以f(x)在x=64处取得最小值.
此时n=-1=-1=9.
故需新建9个桥墩才能使y最小.
费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际做答.      
[活学活用]
某工厂要围建一个面积为128 m2的矩形堆料场,一边可以用原有的墙壁,其它三边要砌新的墙壁,要使砌墙所用的材料最省,则堆料场的长、宽应分别是多少?
解:设场地宽为x m,则长为 m,
因此新墙总长度为y=2x+(x>0),
y′=2-,令y′=0,∵x>0,∴x=8.
因为当0<x<8时,y′<0;当x>8时,y′>0,
所以当x=8时,y取最小值,此时宽为8 m,长为16 m.
即当堆料场的长为16 m,宽为8 m时,可使砌墙所用材料最省.
利润最大问题
[典例] 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2.其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
[解]  (1)因为x=5时,y=11,
所以+10=11,a=2.
(2)由(1)可知,该商品每日的销售量y=+10(x-6)2,
所以商场每日销售该商品所获得的利润
f(x)=(x-3)=2+10(x-3)·(x-6)2,3<x<6.
从而f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x)

0

f(x)
单调递增↗
极大值42
单调递减↘
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以当x=4时,函数f(x)取得最大值,且最大值等于42.
即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
1.经济生活中优化问题的解法
经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.
2.关于利润问题常用的两个等量关系
(1)利润=收入-成本.
(2)利润=每件产品的利润×销售件数.    
[活学活用]
工厂生产某种产品,次品率p与日产量x(万件)间的关系为p=(c为常数,且0(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=×100%)
解:(1)当x>c时,p=,y=·x·3-·x·=0;
当0∴y=·x·3-·x·=.
∴日盈利额y(万元)与日产量x(万件)的函数关系为
y=(c为常数,且0(2)由(1)知,当x>c时,日盈利额为0.
当0∴y′=·=,
令y′=0,得x=3或x=9(舍去),
∴①当00,∴y在区间(0,c]上单调递增,∴y最大值=f(c)=.
②当3≤c<6时,在(0,3)上,y′>0,在(3,c)上,y′<0,∴y在(0,3)上单调递增,在(3,c)上单调递减.
∴y最大值=f(3)=.
综上,若0层级一 学业水平达标
1.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么原油温度的瞬时变化率的最小值是(  )
A.8            B.
C.-1 D.-8
解析:选C 瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.
2.把一段长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )
A. cm2 B.4 cm2
C.3 cm2 D.2 cm2
解析:选D 设一段为x,则另一段为12-x(0<x<12),
则S(x)=×2×+×2×=,∴S′(x)=.
令S′(x)=0,得x=6,
当x∈(0,6)时,S′(x)<0,
当x∈(6,12)时,S′(x)>0,
∴当x=6时,S(x)最小.
∴S==2(cm2).
3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系是R(x)=则总利润最大时,每年生产的产品是(  )
A.100 B.150
C.200 D.300
解析:选D 由题意,总成本为:C=20 000+100x,所以总利润为P=R-C=
P′=令P′=0,当0≤x≤400时,得x=300;当x>400时,P′<0恒成立,易知当x=300时,总利润最大.
4.设正三棱柱的体积为V,那么其表面积最小时,底面边长为(  )
A. B.2
C. D.V
解析:选C 设底面边长为x,则高为h=,
∴S表=3××x+2×x2=+x2,
∴S表′=-+x,
令S表′=0,得x=.
经检验知,当x=时,S表取得最小值.
5.内接于半径为R的球且体积最大的圆锥的高为(  )
A.R B.2R
C.R D.R
解析:选C 设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2,∴V=πr2h=h(2Rh-h2)=πRh2-h3,V′=πRh-πh2.令V′=0得h=R. 当00;当6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.
解析:设甲地销售x辆,则乙地销售(15-x)辆.
总利润L=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
令L′=-0.3x+3.06=0,得x=10.2.
∴当x=10时,L有最大值45.6.
答案:45.6
7.如图,内接于抛物线y=1-x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是________.
解析:设CD=x,则点C坐标为,点B坐标为,
∴矩形ABCD的面积
S=f(x)=x·
=-+x,x∈(0,2).
由f′(x)=-x2+1=0,
得x1=-(舍),x2=,
∴x∈时,f′(x)>0,f(x)是递增的,
x∈时,f′(x)<0,f(x)是递减的,
当x=时,f(x)取最大值.
答案:
8.某厂生产某种产品x件的总成本:C(x)=1 200+x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.
解析:设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=.
总利润y=500-x3-1 200(x>0),
y′=-x2,由y′=0,得x=25,x∈(0,25)时,
y′>0,x∈(25,+∞)时,y′<0,所以x=25时,
y取最大值.
答案:25
9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
解:(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x)=,再由C(0)=8,得k=40,
因此C(x)=.
而建造费用为C1(x)=6x.
最后得隔热层建造费用与20年的能源消耗费用之和为
f(x)=20C(x)+C1(x)=20×+6x
=+6x(0≤x≤10).
(2)f′(x)=6-,
令f′(x)=0,即=6,
解得x=5,x=-(舍去).
当00,
故x=5是f(x)的最小值点,对应的最小值为
f(5)=6×5+=70.
当隔热层修建5 cm厚时,总费用达到最小值70万元.
10.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=(x∈N*).
(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数关系式;
(2)为获最大日盈利,该厂的日产量应定为多少件?
解:(1)由题意可知次品率p=日产次品数/日产量,每天生产x件,次品数为xp,正品数为x(1-p).
因为次品率p=,当每天生产x件时,
有x·件次品,有x件正品.
所以T=200x-100x·
=25·(x∈N*).
(2)T′=-25·,
由T′=0得x=16或x=-32(舍去).
当0层级二 应试能力达标
1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为(  )
A.13万件          B.11万件
C.9万件 D.7万件
解析:选C y′=-x2+81,令y′=0,解得x=9或x=-9(舍去),当0<x<9时,y′>0;当x>9时,y′<0. 所以当x=9时,y取得最大值.
2.若一球的半径为r,作内接于球的圆柱,则圆柱侧面积的最大值为(  )
A.2πr2 B.πr2
C.4πr2 D.πr2
解析:选A 设内接圆柱的底面半径为r1,高为t,
则S=2πr1t=2πr12=4πr1.
∴S=4π. 令(r2r-r)′=0得r1=r.
此时S=4π·r·=4π·r·r=2πr2.
3.某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,要使利润最大每件定价为(  )
A.110元 B.115元
C.120元 D.125元
解析:选B 设每件商品定价x元,依题意可得
利润为L=x(200-x)-30x=-x2+170x(0<x<200).
L′=-2x+170,令-2x+170=0,解得x==85.
因为在(0,200)内L只有一个极值,所以以每件85元出售时利润最大.
4.内接于半径为R的半圆的周长最大的矩形的宽和长分别为(  )
A.和R B.R和R
C.R和R D.以上都不对
解析:选B 设矩形的宽为x,则长为2,
则l=2x+4(0令l′=0,解得x1=R,x2=-R(舍去).
当00,当R所以当x=R时,l取最大值,即周长最大的矩形的宽和长分别为R,R.
5.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费为4x万元,要使一年的总运费与总存储费用之和最小,则x=________吨.
解析:设该公司一年内总共购买n次货物,则n=,
∴总运费与总存储费之和f(x)=4n+4x=+4x,令f′(x)=4-=0,解得x=20,x=-20(舍去),
x=20是函数f(x)的最小值点,故当x=20时,f(x)最小.
答案:20
6.一个帐篷,它下部的形状是高为1 m的正六棱柱,上部的形状是侧棱长为3 m的正六棱锥(如图所示).当帐篷的顶点O到底面中心O1的距离为__________ m时,帐篷的体积最大.
解析:设OO1为x m,底面正六边形的面积为S m2,帐篷的体积为V m3. 则由题设可得正六棱锥底面边长为=(m),于是底面正六边形的面积为S=6×()2=(8+2x-x2).
帐篷的体积为
V=×(8+2x-x2)(x-1)+(8+2x-x2)
=(8+2x-x2)
=(16+12x-x3),
V′=(12-3x2).
令V′=0,解得x=2或x=-2(不合题意,舍去).
当1<x<2时,V′>0;当2<x<4时,V′<0.
所以当x=2时,V最大.
答案:2
7.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万元)(0≤t≤3).
(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?
(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x百万元,可增加的销售额约为-x3+x2+3x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入)
解:(1)设投入t(百万元)的广告费后增加的收益为f(t),
则有f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0≤t≤3),
∴当t=2时,f(t)取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.
(2)设用于技术改造的资金为x(百万元),
则用于广告促销的资金为(3-x)(百万元),又设由此获得的收益是g(x)(百万元),
则g(x)=+[-(3-x)2+5(3-x)]-3=-x3+4x+3(0≤x≤3),
∴g′(x)=-x2+4,
令g′(x)=0,解得x=-2(舍去)或x=2.
又当0≤x<2时,g′(x)>0;当2∴当x=2时,g(x)取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.
8.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=x3-x+8(0(1)当x=64千米/小时时,行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?
解:(1)当x=64千米/小时时,要行驶100千米需要=小时,要耗油
×=11.95(升).
(2)设22.5升油能使该型号汽车行驶a千米,由题意得,
×=22.5,
∴a=,
设h(x)=x2+-,
则当h(x)最小时,a取最大值,
h′(x)=x-=,
令h′(x)=0?x=80,
当x∈(0,80)时,h′(x)<0,
当x∈(80,120)时,h′(x)>0,
故当x∈(0,80)时,函数h(x)为减函数,
当x∈(80,120)时,函数h(x)为增函数,
∴当x=80时,h(x)取得最小值,此时a取最大值为
a==200.
故若油箱有22.5升油,则该型号汽车最多行驶200千米.
(时间: 120分钟 满分:150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以正弦曲线y=sin x上一点P为切点的切线为直线l,则直线l的倾斜角的范围是(  )
A.∪     B.[0,π)
C. D.∪
解析:选A y′=cos x,∵cos x∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是∪.
2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(   )
A.1个 B.2个
C.3个 D.4个
解析:选A 设极值点依次为x1,x2,x3且a<x1<x2<x3<b,则f(x)在(a,x1),(x2,x3)上递增,在(x1,x2),(x3,b)上递减,因此,x1,x3是极大值点,只有x2是极小值点.
3.函数f(x)=x2-ln x的单调递减区间是(  )
A. 
B.
C. ,
D.,
解析:选A ∵f′(x)=2x-=,当0<x≤时,f′(x)≤0,故f(x)的单调递减区间为.
4.函数f(x)=3x-4x3(x∈[0,1])的最大值是(  )
A.1 B.
C.0 D.-1
解析:选A f′(x)=3-12x2,令f′(x)=0,
则x=-(舍去)或x=,f(0)=0,f(1)=-1,
f=-=1,∴f(x)在[0,1]上的最大值为1.
5.已知函数f(x)的导函数f′(x)=a(x-b)2+c的图象如图所示,则函数f(x)的图象可能是(  )
解析:选D 由导函数图象可知,当x<0时,函数f(x)递减,排除A、B;当00,函数f(x)递增.因此,当x=0时,f(x)取得极小值,故选D.
6.定义域为R的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>,则满足2f(x)A.{x|-1C.{x|x<-1或x>1} D.{x|x>1}
解析:选B 令g(x)=2f(x)-x-1,∵f′(x)>,
∴g′(x)=2f′(x)-1>0,∴g(x)为单调增函数,
∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴当x<1时,
g(x)<0,即2f(x)7.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2,生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,应生产(  )
A.6千台 B.7千台
C.8千台 D.9千台
解析:选A 设利润为y,则y=y1-y2=17x2-(2x3-x2)=18x2-2x3,y′=36x-6x2,令y′=0得x=6或x=0(舍),f(x)在(0,6)上是增函数,在(6,+∞)上是减函数,∴x=6时y取得最大值.
8.已知定义在R上的函数f(x),f(x)+x·f′(x)<0,若a<b,则一定有(  )
A.af(a)<bf(b) B.af(b)<bf(a)
C.af(a)>bf(b) D.af(b)>bf(a)
解析:选C [x·f(x)]′=x′f(x)+x·f′(x)=f(x)+x·f′(x)<0,
∴函数x·f(x)是R上的减函数,
∵a<b,∴af(a)>bf(b).
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中横线上)
9.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3处取得极值,则a=________.
解析:f′(x)=3x2+2ax+3,∵f′(-3)=0.
∴3×(-3)2+2a×(-3)+3=0,∴a=5.
答案:5
10.若f(x)=x3-f′(1)x2+x+5,则f′(1)=________,f′(2)=________.
解析:f′(x)=x2-2f′(1)x+1,令x=1,得f′(1)=,∴f′(2)=22-2××2+1=.
答案: 
11.函数y=ln(x2-x-2)的定义域为________,单调递减区间为________.
解析:由题意,x2-x-2>0,解得x<-1或x>2,故函数y=ln(x2-x-2)的定义域为(-∞,-1)∪(2,+∞),
令f(x)=x2-x-2,f′(x)=2x-1<0,得x<,
∴函数y=ln(x2-x-2)的单调递减区间为(-∞,-1).
答案:(-∞,-1)∪(2,+∞) (-∞,-1)
12.函数y=x3-6x+a的极大值为________,极小值为________.
解析:y′=3x2-6=3(x+)(x-),
令y′>0,得x>或x<-,
令y′<0,得-<x<,
∴当x=-时取得极大值a+4,
当x=时取得极小值a-4.
答案:a+4 a-4
13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=________,b=________.
解析:y′=3x2+2ax+b,方程y′=0有根-1及3,
由根与系数的关系得,
∴
答案:-3 -9
14.已知函数f(x)满足f(x)=f(π-x),且当x∈时,f(x)=x+sin x,设a=f(1),b=f(2),c=f(3),则a,b,c的大小关系是________.
解析:f(2)=f(π-2),f(3)=f(π-3),
因为f′(x)=1+cos x≥0,
故f(x)在上是增函数,
∵>π-2>1>π-3>0,
∴f(π-2)>f(1)>f(π-3),即c答案:c15.若函数f(x)=在区间(m,2m+1)上单调递增,则实数m的取值范围是__________.
解析:f′(x)=,令f′(x)>0,得-1<x<1,
即函数f(x)的增区间为(-1,1).
又f(x)在(m,2m+1)上单调递增,
所以解得-1<m≤0.
答案:(-1,0]
三、解答题(本大题共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
解:(1)f′(x)=3ax2+2bx-3,依题意,
f′(1)=f′(-1)=0,即
解得a=1,b=0.
∴f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1).
令f′(x)=0,得x=-1或x=1.
若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,
故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上是增函数.
若x∈(-1,1),则f′(x)<0,故f(x)在(-1,1)上是减函数.
∴f(-1)=2是极大值;f(1)=-2是极小值.
(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x-3x0.
∵f′(x0)=3(x-1),
故切线的方程为y-y0=3(x-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x-3x0)=3(x-1)(0-x0).
化简得x=-8,解得x0=-2.
∴切点为M(-2,-2),切线方程为9x-y+16=0.
17. (本小题满分15分)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值;
(2)求f(x)的单调区间.
解:(1)因为f(x)=xea-x+bx,
所以f′(x)=(1-x)ea-x+b.
依题设有即
解得
(2)由(1)知f(x)=xe2-x+ex.
由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,
f′(x)与1-x+ex-1同号.
令g(x)=1-x+ex-1,则g′(x)=-1+ex-1.
所以当x∈(-∞,1)时,g′(x)<0,
g(x)在区间(-∞,1)上单调递减;
当x∈(1,+∞)时,g′(x)>0,
g(x)在区间(1,+∞)上单调递增.
故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,
从而g(x)>0,x∈(-∞,+∞).
综上可知,f′(x)>0,x∈(-∞,+∞),
故f(x)的单调递增区间为(-∞,+∞).
18.(本小题满分15分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.
(1)求a,b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.
解:(1)由投资额为零时收益为零,
可知f(0)=-a+2=0,g(0)=6ln b=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
设投入经销B商品的资金为x万元(0<x≤5),
则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,
则S(x)=2(5-x)+6ln(x+1)
=6ln(x+1)-2x+10(0<x≤5).
S′(x)=-2,令S′(x)=0,得x=2.
当0<x<2时,S′(x)>0,函数S(x)单调递增;
当2<x≤5时,S′(x)<0,函数S(x)单调递减.
所以当x=2时,函数S(x)取得最大值,
S(x)max=S(2)=6ln 3+6≈12.6万元.
所以,当投入经销A商品3万元,B商品2万元时,
他可获得最大收益,收益的最大值约为12.6万元.
19.(本小题满分15分)已知函数f(x)=ax2+2ln(1-x)(a为常数).
(1)若f(x)在x=-1处有极值,求a的值并判断x=-1是极大值点还是极小值点;
(2)若f(x)在[-3,-2]上是增函数,求a的取值范围.
解:(1)f′(x)=2ax-,x∈(-∞,1),
f′(-1)=-2a-1=0,
所以a=-.
f′(x)=-x-=.
∵x<1,∴1-x>0,x-2<0,
因此,当x<-1时f′(x)>0,
当-1∴x=-1是f(x)的极大值点.
(2)由题意f′(x)≥0在x∈[-3,-2]上恒成立,
即2ax-≥0在x∈[-3,-2]上恒成立
∴a≤在x∈[-3,-2]上恒成立,
∵-x2+x=-2+ ∈[-12,-6],
∴∈,
∴min=-,a≤-.
即a的取值范围为.
20.(本小题满分15分)已知函数f(x)=x+(t>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).
(1)求证:x1,x2为关于x的方程x2+2tx-t=0的两根;
(2)设|MN|=g(t),求函数g(t)的表达式;
(3)在(2)的条件下,若在区间[2,16]内总存在m+1个实数a1,a2,…,am+1(可以相同),使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
解:(1)证明:由题意可知:y1=x1+,y2=x2+
∵f′(x)=1-,
∴切线PM的方程为:y-=(x-x1),
又∵切线PM过点P(1,0),
∴0-=(1-x1),
即x+2tx1-t=0,①
同理,由切线PN也过点P(1,0),
得x+2tx2-t=0.②
由①②,可得x1,x2是方程x2+2tx-t=0(*)的两根
(2)由(*)知
|MN|=
=
=,
∴g(t)=(t>0).
(3)易知g(t)在区间[2,16]上为增函数,
∴g(2)≤g(ai)≤g(16)(i=1,2,…,m+1),
则m·g(2)≤g(a1)+g(a2)+…+g(am)<g(am+1)≤g(16).
即m·g(2)<g(16),
即m<,
所以m< ,由于m为正整数,所以m≤6.
又当m=6时,存在a1=a2=…=a6=2,a7=16满足条件,所以m的最大值为6.
课件23张PPT。
“多练提能·熟生巧”见“课时跟踪检测(八)”
(单击进入电子文档)
课时跟踪检测(八) 生活中的优化问题举例
层级一 学业水平达标
1.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么原油温度的瞬时变化率的最小值是(  )
A.8            B.
C.-1 D.-8
解析:选C 瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.
2.把一段长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )
A. cm2 B.4 cm2
C.3 cm2 D.2 cm2
解析:选D 设一段为x,则另一段为12-x(0<x<12),
则S(x)=×2×+×2×=,∴S′(x)=.
令S′(x)=0,得x=6,
当x∈(0,6)时,S′(x)<0,
当x∈(6,12)时,S′(x)>0,
∴当x=6时,S(x)最小.
∴S==2(cm2).
3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系是R(x)=则总利润最大时,每年生产的产品是(  )
A.100 B.150
C.200 D.300
解析:选D 由题意,总成本为:C=20 000+100x,所以总利润为P=R-C=
P′=令P′=0,当0≤x≤400时,得x=300;当x>400时,P′<0恒成立,易知当x=300时,总利润最大.
4.设正三棱柱的体积为V,那么其表面积最小时,底面边长为(  )
A. B.2
C. D.V
解析:选C 设底面边长为x,则高为h=,
∴S表=3××x+2×x2=+x2,
∴S表′=-+x,
令S表′=0,得x=.
经检验知,当x=时,S表取得最小值.
5.内接于半径为R的球且体积最大的圆锥的高为(  )
A.R B.2R
C.R D.R
解析:选C 设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2,∴V=πr2h=h(2Rh-h2)=πRh2-h3,V′=πRh-πh2.令V′=0得h=R. 当00;当6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.
解析:设甲地销售x辆,则乙地销售(15-x)辆.
总利润L=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
令L′=-0.3x+3.06=0,得x=10.2.
∴当x=10时,L有最大值45.6.
答案:45.6
7.如图,内接于抛物线y=1-x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是________.
解析:设CD=x,则点C坐标为,点B坐标为,
∴矩形ABCD的面积
S=f(x)=x·
=-+x,x∈(0,2).
由f′(x)=-x2+1=0,
得x1=-(舍),x2=,
∴x∈时,f′(x)>0,f(x)是递增的,
x∈时,f′(x)<0,f(x)是递减的,
当x=时,f(x)取最大值.
答案:
8.某厂生产某种产品x件的总成本:C(x)=1 200+x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.
解析:设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=.
总利润y=500-x3-1 200(x>0),
y′=-x2,由y′=0,得x=25,x∈(0,25)时,
y′>0,x∈(25,+∞)时,y′<0,所以x=25时,
y取最大值.
答案:25
9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
解:(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x)=,再由C(0)=8,得k=40,
因此C(x)=.
而建造费用为C1(x)=6x.
最后得隔热层建造费用与20年的能源消耗费用之和为
f(x)=20C(x)+C1(x)=20×+6x
=+6x(0≤x≤10).
(2)f′(x)=6-,
令f′(x)=0,即=6,
解得x=5,x=-(舍去).
当00,
故x=5是f(x)的最小值点,对应的最小值为
f(5)=6×5+=70.
当隔热层修建5 cm厚时,总费用达到最小值70万元.
10.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=(x∈N*).
(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数关系式;
(2)为获最大日盈利,该厂的日产量应定为多少件?
解:(1)由题意可知次品率p=日产次品数/日产量,每天生产x件,次品数为xp,正品数为x(1-p).
因为次品率p=,当每天生产x件时,
有x·件次品,有x件正品.
所以T=200x-100x·
=25·(x∈N*).
(2)T′=-25·,
由T′=0得x=16或x=-32(舍去).
当0层级二 应试能力达标
1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为(  )
A.13万件          B.11万件
C.9万件 D.7万件
解析:选C y′=-x2+81,令y′=0,解得x=9或x=-9(舍去),当0<x<9时,y′>0;当x>9时,y′<0. 所以当x=9时,y取得最大值.
2.若一球的半径为r,作内接于球的圆柱,则圆柱侧面积的最大值为(  )
A.2πr2 B.πr2
C.4πr2 D.πr2
解析:选A 设内接圆柱的底面半径为r1,高为t,
则S=2πr1t=2πr12=4πr1.
∴S=4π. 令(r2r-r)′=0得r1=r.
此时S=4π·r·=4π·r·r=2πr2.
3.某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,要使利润最大每件定价为(  )
A.110元 B.115元
C.120元 D.125元
解析:选B 设每件商品定价x元,依题意可得
利润为L=x(200-x)-30x=-x2+170x(0<x<200).
L′=-2x+170,令-2x+170=0,解得x==85.
因为在(0,200)内L只有一个极值,所以以每件85元出售时利润最大.
4.内接于半径为R的半圆的周长最大的矩形的宽和长分别为(  )
A.和R B.R和R
C.R和R D.以上都不对
解析:选B 设矩形的宽为x,则长为2,
则l=2x+4(0令l′=0,解得x1=R,x2=-R(舍去).
当00,当R所以当x=R时,l取最大值,即周长最大的矩形的宽和长分别为R,R.
5.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费为4x万元,要使一年的总运费与总存储费用之和最小,则x=________吨.
解析:设该公司一年内总共购买n次货物,则n=,
∴总运费与总存储费之和f(x)=4n+4x=+4x,令f′(x)=4-=0,解得x=20,x=-20(舍去),
x=20是函数f(x)的最小值点,故当x=20时,f(x)最小.
答案:20
6.一个帐篷,它下部的形状是高为1 m的正六棱柱,上部的形状是侧棱长为3 m的正六棱锥(如图所示).当帐篷的顶点O到底面中心O1的距离为__________ m时,帐篷的体积最大.
解析:设OO1为x m,底面正六边形的面积为S m2,帐篷的体积为V m3. 则由题设可得正六棱锥底面边长为=(m),于是底面正六边形的面积为S=6×()2=(8+2x-x2).
帐篷的体积为
V=×(8+2x-x2)(x-1)+(8+2x-x2)
=(8+2x-x2)
=(16+12x-x3),
V′=(12-3x2).
令V′=0,解得x=2或x=-2(不合题意,舍去).
当1<x<2时,V′>0;当2<x<4时,V′<0.
所以当x=2时,V最大.
答案:2
7.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万元)(0≤t≤3).
(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?
(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x百万元,可增加的销售额约为-x3+x2+3x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入)
解:(1)设投入t(百万元)的广告费后增加的收益为f(t),
则有f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0≤t≤3),
∴当t=2时,f(t)取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.
(2)设用于技术改造的资金为x(百万元),
则用于广告促销的资金为(3-x)(百万元),又设由此获得的收益是g(x)(百万元),
则g(x)=+[-(3-x)2+5(3-x)]-3=-x3+4x+3(0≤x≤3),
∴g′(x)=-x2+4,
令g′(x)=0,解得x=-2(舍去)或x=2.
又当0≤x<2时,g′(x)>0;当2∴当x=2时,g(x)取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.
8.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=x3-x+8(0(1)当x=64千米/小时时,行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?
解:(1)当x=64千米/小时时,要行驶100千米需要=小时,要耗油
×=11.95(升).
(2)设22.5升油能使该型号汽车行驶a千米,由题意得,
×=22.5,
∴a=,
设h(x)=x2+-,
则当h(x)最小时,a取最大值,
h′(x)=x-=,
令h′(x)=0?x=80,
当x∈(0,80)时,h′(x)<0,
当x∈(80,120)时,h′(x)>0,
故当x∈(0,80)时,函数h(x)为减函数,
当x∈(80,120)时,函数h(x)为增函数,
∴当x=80时,h(x)取得最小值,此时a取最大值为
a==200.
故若油箱有22.5升油,则该型号汽车最多行驶200千米.
同课章节目录