(浙教版)备考2019中考数学高频考点剖析 专题32 动态几何之面动问题(原卷+解析卷)

文档属性

名称 (浙教版)备考2019中考数学高频考点剖析 专题32 动态几何之面动问题(原卷+解析卷)
格式 zip
文件大小 2.5MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-04-29 15:53:54

文档简介

备考2019中考数学高频考点剖析
专题三十二 动态几何之面动问题
考点扫描☆聚焦中考
动态几何中的面动问题,是每年中考的压轴试题内容之一,考查的知识点包括面动问题在函数中的研究和面动在几何图形中的综合应用两方面,总体来看,难度系数较高,以选择为主。也有少量的解析题。解析题主要以综合性问题为主。结合2017、2018年全国各地中考的实例和2019年名校中考模拟试题,我们从两个方面进行动态几何中的面动问题的探讨:
(1)面动问题在函数应用中的研究;
(2)面动问题在几何图形中的研究;
考点剖析☆典型例题
例1如图,∠APB=30°,点O是射线PB上的一点,OP=5cm,若以点O为圆心,半径为1.5cm的⊙O沿BP方向移动,当⊙O与PA相切时,圆心O移动的距离为________?cm.
例2如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2 cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2 , 运动时间xs.能反映ycm2与xs之间函数关系的大致图象是(?? )
A.?B.??C.??D.?
例3两个直角边为6的全等的等腰Rt△AOB和Rt△CED中,按图1所示的位置放置,A与C重合,O与E重合.
(Ⅰ)求图1中,A,B,D三点的坐标;
(Ⅱ)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(Ⅲ)当Rt△CED以(Ⅱ)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求点G的坐标.
考点过关☆专项突破
类型一 面动问题在函数方面的应用
1. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是(?? )
A.??B.???C.??D.?
2. (2017?宁德)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为   .
3. (2017湖北荆州)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为  .
4. (2018?山东淄博?4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为  .
5. 如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC.动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.
(1)求该抛物线的解析式;
(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.
类型二 面动问题在几何图形中的研究
1.(2018?江苏扬州?3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为   .
2.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=   .
3. (2018?湖南省永州市?12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.
(1)求正方形DFGI的边长;
(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?
(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.
4.(2018年江苏省泰州市?12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
(1)根据以上操作和发现,求的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)

备考2019中考数学高频考点剖析
专题三十二 动态几何之面动问题
考点扫描☆聚焦中考
动态几何中的面动问题,是每年中考的压轴试题内容之一,考查的知识点包括面动问题在函数中的研究和面动在几何图形中的综合应用两方面,总体来看,难度系数较高,以选择为主。也有少量的解析题。解析题主要以综合性问题为主。结合2017、2018年全国各地中考的实例和2019年名校中考模拟试题,我们从两个方面进行动态几何中的面动问题的探讨:
(1)面动问题在函数应用中的研究;
(2)面动问题在几何图形中的研究;
考点剖析☆典型例题
例1如图,∠APB=30°,点O是射线PB上的一点,OP=5cm,若以点O为圆心,半径为1.5cm的⊙O沿BP方向移动,当⊙O与PA相切时,圆心O移动的距离为________?cm.
【考点】切线的判定,几何图形的动态问题
【分析】根据题意可知,分两种情况讨论:当⊙O平移到⊙O′位置时,⊙O与PA相切时,连接O′C,则O′C⊥PA,根据30°角所对的直角边等于斜边的一半,求出O′P,然后根据OO′=OP﹣O′P,就可求出圆心O移动的距离;当圆O与射线PA的反向延长线相切时,可求出O′P,再根据OO′=OP+O′P,可求出结果。
【解析】【解答】解: ①如图1,
当⊙O平移到⊙O′位置时,⊙O与PA相切时,且切点为C,
连接O′C,则O′C⊥PA,
即∠O′CP=90°,
∵∠APB=30°,O′C=1.5cm,
∴O′P=2O′C=3cm,
∵OP=5cm,
∴OO′=OP﹣O′P=2(cm);
②如图2:同理可得:O′P=3cm,
∴O′O=8cm.
故答案为:2或8.
例3如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2 cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2 , 运动时间xs.能反映ycm2与xs之间函数关系的大致图象是(?? )
A.?B.??C.??D.?
【考点】二次函数的实际应用-动态几何问题
【分析】,如图?? 根据含30°角的直角三角形的边之间的关系得出AB的长,根据勾股定理得出AC的长,根据矩形的性质得出DE=GF=2 3 ,∠C=∠DEF=90°,根据平行线的判定方法得出AC∥DE,此题有三种情况:①当0<x<2时,AB交DE于H,根据平行线分线段成比例定理得出EH∶AC=BE∶BC,从而得出EH的值,根据三角形的面积公式即可得出y,与x之间的函数关系,②当2≤x≤6时,如图,重叠部分的面积是一个定值,就是三角形ABC的面积,即y是一个常值函数,③当6<x≤8时,如图,设△ABC的面积是s1 , △FNB的面积是s2 , BF=x﹣6,与(1)类同,同法可求FN,由y=s1﹣s2 , 得出y与x之间的函数关系,根据三个函数解析式,判断图像得出结论。
【解析】【解答】∵∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2 ,
∵四边形DEFG为矩形,∠C=90,
∴DE=GF=2 ,∠C=∠DEF=90°,
∴AC∥DE,
此题有三种情况:
①当0<x<2时,AB交DE于H
∵DE∥AC,
∴ ,
即 ,
解得:EH= x,
所以y= ? x?x= x2 ,
∵x 、y之间是二次函数,
所以所选答案C不符合题意,答案D不符合题意,
∵a= >0,开口向上;
②当2≤x≤6时,如图,
此时y= ×2×2 =2 ,
③当6<x≤8时,如图,设△ABC的面积是s1 , △FNB的面积是s2 ,
BF=x﹣6,与(1)类同,同法可求FN= X﹣6 ,
∴y=s1﹣s2 ,
= ×2×2 ﹣×(x﹣6)×(X﹣6 ),
=﹣ x2+6 x﹣16 ,
∵﹣ <0,
∴开口向下,
所以答案A不符合题意,答案B不符合题意,
故答案为:A.
例4两个直角边为6的全等的等腰Rt△AOB和Rt△CED中,按图1所示的位置放置,A与C重合,O与E重合.
(Ⅰ)求图1中,A,B,D三点的坐标;
(Ⅱ)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(Ⅲ)当Rt△CED以(Ⅱ)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求点G的坐标.
【考点】等腰直角三角形,几何图形的动态问题,二次函数的实际应用-几何问题
【解析】【分析】(Ⅰ)根据已知两个直角边为6的全等的等腰Rt△AOB和Rt△CED中,就可得到点A、B、D的坐标。 (Ⅱ)分情况讨论:当0≤x<3时,位置如图A所示,作GH⊥DB,垂足为H,分别用含x的代数式分别表示出OE,EH,DO,DH,再由y=2S梯形IOHG=2(S△GHD﹣S△IOD),就可列出y与x的函数解析式;当3≤x≤6时,位置如图B所示.用含x的代数式表示出DB,根据y=S△DGB , 就可列出y与x的函数解析式。 (Ⅲ)图B中,作GH⊥OE,垂足为H,当x=4时,分别求出OE,DB,GH,OH的长,就可得到点G的坐标。
【答案】 解:(Ⅰ)∵两个直角边为6的全等的等腰Rt△AOB和Rt△CED中,
可得:A(0,6),B(6,0),D(﹣6,0).
(Ⅱ)当0≤x<3时,位置如图A所示,作GH⊥DB,垂足为H,
可知:OE=2x,EH=x,
DO=6﹣2x,DH=6﹣x,
∴y=2S梯形IOHG=2(S△GHD﹣S△IOD)
=2[(6﹣x)2﹣ (6﹣2x)2]
=2(x2+6x)
=﹣3x2+12x
当3≤x≤6时,位置如图B所示.
可知:DB=12﹣2x
∴y=S△DGB= (DB)2= [(12﹣2x)]2=x2﹣12x+36
∴y与x的函数关系式为:y= ;
(Ⅲ)图B中,作GH⊥OE,垂足为H,
当x=4时,OE=2x=8,DB=12﹣2x=4,
∴GH=DH=DB=2,OH=6﹣HB=6﹣DB=6﹣2=4
∴G(4,2).
考点过关☆专项突破
类型一 面动问题在函数方面的应用
1. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是(?? )
A.??B.?C.??D.?
【答案】 A
【考点】几何图形的动态问题
【分析】根据等腰直角三角形的性质得出∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,△MEC是等腰直角三角形,根据等腰直角三角形的面积计算方法即可dechuy与x之间的函数关系式;y=x2;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,根据等腰直角三角形的性质得出CN=CD=2,故CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,根据等腰直角三角形的性质得出EF=MF=2,ED=CF=x﹣2,故y=S梯形EMCD=2x-2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,EH=MH=2,DE=CH=x﹣2,CG=CN=6﹣x,DF=DG=2﹣(6﹣x)=x﹣4,由y=S梯形EMCD﹣S△FDG=- x2+10x-18,根据三段函数的函数图像即可作出判断。
【解析】【解答】解:∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由题意得:CM=x,
分三种情况:
①当0≤x≤2时,如图1,
边CD与PM交于点E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此时矩形ABCD与△PMN重叠部分是△EMC,
∴y=S△EMC= CM?CE= ;
故答案为:项B和D不正确;
②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此时x=4,
当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,
过E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD= CD?(DE+CM)= =2x﹣2;
③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG= ﹣ = ×2×(x﹣2+x)﹣ =﹣ +10x﹣18,
故答案为:项A不符合题意;
故答案为:A.
2. (2017?宁德)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为 2 .
【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与图形变化﹣平移.
【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数y=的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.
【解答】解:∵四边形ABCO是菱形,
∴CD=AD,BC∥OA,
∵D (8,4),反比例函数y=的图象经过点D,
∴k=32,C点的纵坐标是2×4=8,
∴y=,
把y=8代入得:x=4,
∴n=4﹣2=2,
∴向左平移2个单位长度,反比例函数能过C点,
故答案为:2.
【点评】本题考查了菱形的性质,平移的性质,用待定系数法求反比例函数的解析式等知识点,能求出C的坐标是解此题的关键.
3. (2017湖北荆州)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为 3 .
【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k的几何意义;T7:解直角三角形.
【分析】利用矩形的面积公式得到AB?BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE?2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为y=﹣,然后确定N点坐标,最后计算BN的长.
【解答】解:∵S矩形OABC=32,
∴AB?BC=32,
∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,
∴AB=DE,OD=OA,
在Rt△ODE中,tan∠DOE==,即OD=2DE,
∴DE?2DE=32,解得DE=4,
∴AB=4,OA=8,
在Rt△OCM中,∵tan∠COM==,
而OC=AB=4,
∴MC=2,
∴M(﹣2,4),
把M(﹣2,4)代入y=得k=﹣2×4=﹣8,
∴反比例函数解析式为y=﹣,
当x=﹣8时,y=﹣=1,则N(﹣8,1),
∴BN=4﹣1=3.
故答案为3.
4. (2018?山东淄博?4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为 2 .
【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.
【分析】先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,从而得结论.
【解答】解:如图,∵B,C是线段AD的三等分点,
∴AC=BC=BD,
由题意得:AC=BD=m,
当y=0时,x2+2x﹣3=0,
(x﹣1)(x+3)=0,
x1=1,x2=﹣3,
∴A(﹣3,0),B(1,0),
∴AB=3+1=4,
∴AC=BC=2,
∴m=2,
故答案为:2.
【点评】本题考查了抛物线与x轴的交点问题、抛物线的平移及解一元二次方程的问题,利用数形结合的思想和三等分点的定义解决问题是关键.
5. 如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC.动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.
(1)求该抛物线的解析式;
(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.
【考点】待定系数法求二次函数解析式,锐角三角函数的定义,二次函数的实际应用-动态几何问题,二次函数的实际应用-几何问题
【解析】【分析】(1)利用待定系数法,将点A、B的坐标代入函数解析式,解方程组,即可得出结果。 (2)根据题意求出AP=t,连接DQ,证明△ADQ∽△ABC,求出DP、AP的长,然后求解线段PQ被CD垂直平分时的t的值。 (3)和抛物线的对称轴与x的交点为E,可得出点A、B是关于抛物线的对称轴对称,因此连接BQ交对称轴于点M,可得出MQ+MA=BQ.利用解直角三角形求出ME的长,得出点M的坐标即可。
定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
【答案】(1)解:∵抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,
∴ 解得a=- ,b= .
∴所求抛物线的解析式为y=- x2+ x+4
(2)解:如图①,连接DQ,
依题意知AP=t.
∵抛物线y=- x2+ x+4与y轴交于点C,
∴C(0,4).
又A(-3,0),B(4,0),
可得AC=5,BC=4 ,AB=7.
∵BD=BC,∴AD=AB-BD=7-4 .
∵CD垂直平分PQ,
∴QD=DP,∠CDQ=∠CDP.
∵BD=BC,∴∠DCB=∠CDB,
∴∠CDQ=∠DCB,∴DQ∥BC,
∴△ADQ∽△ABC,∴ = ,∴ = ,
∴ =
解得DP=4 - ,∴AP=AD+DP= ,
∴线段PQ被CD垂直平分时,t的值为
(3)解:如图②,
设抛物线y=- x2+ x+4的对称轴
x= 与x轴交于点E,
由于点A、B关于对称轴x= 对称,
连接BQ交对称轴于点M,
则MQ+MA=MQ+MB,即MQ+MA=BQ.
当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO,
∴tan∠EBM=tan∠ACO= ,
∴ = ,即 = ,解得ME= .?
∴M( , ),即在抛物线的对称上存在一点M( , ),使得MQ+MA的值最小
类型二 面动问题在几何图形中的研究
1.(2018?江苏扬州?3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 (,﹣) .
【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.
【解答】解:由折叠得:∠CBO=∠DBO,
∵矩形ABCO,
∴BC∥OA,
∴∠CBO=∠BOA,
∴∠DBO=∠BOA,
∴BE=OE,
在△ODE和△BAE中,

∴△ODE≌△BAE(AAS),
∴AE=DE,
设DE=AE=x,则有OE=BE=8﹣x,
在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,
解得:x=5,即OE=5,DE=3,
过D作DF⊥OA,
∵S△OED=OD?DE=OE?DF,
∴DF=,OF==,
则D(,﹣).
故答案为:(,﹣)
【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.
2.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75° .
【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
∴∠EBG=∠EGB.
∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.
又∵AD∥BC,
∴∠AGB=∠GBC.
∴∠AGB=∠BGH.
∵∠DGH=30°,
∴∠AGH=150°,
∴∠AGB=∠AGH=75°,
故答案为:75°.
【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
3. (2018?湖南省永州市?12分)如图1,在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=.矩形DFGI恰好为正方形.
(1)求正方形DFGI的边长;
(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?
(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M,N,求△MNG′的周长.
【分析】(1)由HI∥AD,得到=,求出AD即可解决问题;
(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;
(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题;
【解答】解:(1)如图1中,
∵HI∥AD,
∴=,
∴=,
∴AD=6,
∴ID=CD﹣CI=2,
∴正方形的边长为2.
(2)如图2中,设等G落在PC时对应的点为G′,点F的对应的点为F′.
∵CA=CP,CD⊥PA,
∴∠ACD=∠PCD,∠A=∠P,
∵HG′∥PA,
∴∠CHG′=∠A,∠CG′H=∠P,
∴∠CHG′=∠CG′H,
∴CH=CG′,
∴IH=IG′=DF′=3,
∵IG∥DB,
∴=,
∴=,
∴DB=3,
∴DB=DF′=3,
∴点B与点F′重合,
∴移动后的矩形与△CBP重叠部分是△BGG′,
∴移动后的矩形与△CBP重叠部分的形状是三角形.
(3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.
∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,
∵DN=DN,DM=DR,
∴△NDM≌△NDR,
∴MN=NR=NF′+RF′=NF′+MI′,
∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.
【点评】本题考查四边形综合题、矩形的性质、正方形的性质、平行线等分线段定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.
4.(2018年江苏省泰州市?12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
(1)根据以上操作和发现,求的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)
【分析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;
(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;
②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.
【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,
又∵∠B=90°,
∴△BCE是等腰直角三角形,
∴=cos45°=,即CE=BC,
由图②,可得CE=CD,而AD=BC,
∴CD=AD,
∴=;
(2)①设AD=BC=a,则AB=CD=a,BE=a,
∴AE=(﹣1)a,
如图③,连接EH,则∠CEH=∠CDH=90°,
∵∠BEC=45°,∠A=90°,
∴∠AEH=45°=∠AHE,
∴AH=AE=(﹣1)a,
设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,
∴AH2+AP2=BP2+BC2,
即[(﹣1)a]2+x2=(a﹣x)2+a2,
解得x=a,即AP=BC,
又∵PH=CP,∠A=∠B=90°,
∴Rt△APH≌Rt△BCP(HL),
∴∠APH=∠BCP,
又∵Rt△BCP中,∠BCP+∠BPC=90°,
∴∠APH+∠BPC=90°,
∴∠CPH=90°;
②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,
故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;
折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,
由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,
又∵∠DCH=∠ECH,
∴∠BCP=∠PCE,即CP平分∠BCE,
故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.
【点评】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.

同课章节目录