人教版八年级数学下册19.2.1正比例函数的图像和性质教学设计及教学反思

文档属性

名称 人教版八年级数学下册19.2.1正比例函数的图像和性质教学设计及教学反思
格式 zip
文件大小 152.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-05-10 10:30:10

图片预览

文档简介


19..2.1正比例函数的图像和性质
一、教学内容
《正比例函数的图象和性质》。之前,学生已经有了平面坐标系的基本知识、常量与变量以及正比例函数的概念等知识,正比例函数,是同学们初中第一次接触的函数,描点画图得到其图像的方法为后面学习反比例函数的图像,以及下学期学习一次函数和二次函数打下良好基础。并且通过观察图像的变化得到其性质也是学习函数性质的通用方法。因此,本节课具有承上启下的重要作用。函数还有着非常广泛的实际应用;函数还是培养学生数学能力的良好题材,所以函数在初中数学中占着举足轻重的作用。函数的思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,体现了数形结合等数学思想方法,不仅是知识性方面,更重要的学习方法方面,作为一名数学老师,要传授给学生数学知识,更重要的是传授给学生数学思想、数学方法,因此本节课在教学中力图向学生展示正比例函数图像的运动变化,通过观察、归纳体会数形结合数学思想方法。
二、教学目标
1.知识与技能:
 (1)能画正比例函数的图像,并能结合公理和正比例函数图象特点快速作图;
(2)能够在画图过程中观察并发现函数的性质;学会简单描述及应用。
2.过程与方法:
(1)初步能够从数学角度去观察事物,思考问题,体验解决问题方法策略的多样性;
(2)逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由特殊到一般的数学思想;
(3)能够尝试演绎推理发现规律,体验合作学习的过程。
3.情感态度与价值观:
(1)通过小组合做讨论,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;
(2)通过本节课的教学希望能激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
三、学情分析
教材分析:
正比例函数图像是在学习正比例函数解析的后续内容,这一节内容是正比例函数与直角坐标系的完美结合。学生在这节课中如果能内化和感悟数形结合的思想,将会为以后研究更为复杂的反比例函数及二次函数的图像打下坚实的基础。
学生分析:
在这节课之前,该班学生已经较好的拥有了解决平面坐标系的一些基本问题,理解了变量以及常量和代数式的内容的起点能力,因此在学习新知识的时候也不存在多大的问题,也形成了较理想的先决条件。学生运用数学知识解决实际问题以及推理总结的能力有待进一步加强。
四、教学重难点
教学重点:画正比例函数的图像,并在画图过程中观察并发现正比例函数图象的性质。
教学难点:在画图过程中观察并发现函数的图象性质;学会简单描述及应用。
五、教学方法及运用分析
本节内容是在学生学习了变量和函数的基本概念基础上进行的。但他们对函数刚刚接触,函数对他们来说还是比较抽象难懂,所以在课堂教学中,不是老师单纯的传教知识,而是要在老师的指导下让学生自己学。要把教法融于学法中,在学法中体现教法。希望学生在本节课大胆地尝试、探究,在画图过程中培养动手动脑的能力,并在动手动脑的过程中逐步理解正比例函数的图象和性质。
(1)感受生活中存在大量的函数关系,了解函数的意义,通过简单的实际问题,使学生自发的寻找函数关系,让学生学会列出简单题目中的正比例函数关系。
(2)经历由具体实例建立正比例函数关系过程,进一步发展学生的符号感和数学化的能力,在实际动手操作画图中,渗透数形结合的思想。并通过对问题的讨论归纳,让学生在“学生与学生”或“学生与老师”的交流过程中学习知识,争取做到不仅“学会”而且“会学”“乐学”。
基于以上两点考虑,我准备在课堂中重视小组讨论,讲练结合及学生自主归纳总结三种教学策略的应用。
小组讨论策略:班级原本就已经在安排位置的基础上把同组成员归在前后两桌,实行小组讨论方便有效,小组应在讨论中发挥领导的作用,做好记录,其他成员各施其职,注意有效参与。
探究引导策略:教师做重点提示讲解,最多动手画一两个图形,注意画图规范,切不可随手画直线等,学生作图时间较多,教师可抽空下位检查指导,并展示优秀作业,宽松课堂学习气氛,维持学生学习的动机。
自主合作探究式学习策略:通过学生合作交流或独立思考正比例函数的性质,促进思维的深层次加工和提高课堂参与度,也让学生有更多的体验成功的机会。
六、教学手段及运用分析
每位同学准备几张方格纸,或已画好直角坐标系的纸张,以节少画图所需时间;教师自制的多媒体课件;附带需安装相关软件,如几何画板等;上课环境为多媒体大屏幕环境,有实物投影仪,可投放学生的优秀作业和相关重要内容。
七、教学过程
教学过程是教法和学法的具体实践过程,根据教材的特点和学生实际情况,设计采用“复习旧知—合作探究—归纳总结—强化提高”的模式,安排以下六个环节以完成本节教学:












(一)复习引入、温顾知新
1.平面直角坐标系(大屏幕显示答案):
直角坐标平面内任意一点都有唯一确定的坐标(x,y)与之对应,反过来,以任意给定的一对有序数对(x,y)为坐标,都可以在直角坐标平面内确定一个点
注:坐标轴上的点不属于任何一个象限
2.正比例函数的定义
一般地,形如 y=kx(k为常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
这个过程,由老师提问学生作答,在学生回答不够完善的地方,请其他学生补充,老师紧后给予完善。
3.引入课题:前面我们学习了函数的这些基本内容,今天我们要来体会初中数学中最重的一种数学方法,数形结合,正所谓:数无形时少直观,我们一起来画出正比例函数的图象吧。
这样的设计,适合学生的学习习惯,能让学生在温习旧知识的过程中体验会旧知与新知之间的联系,积极探索新知识
(二)数形结合、动手画图
例: 画正比例函数 y =3x 的图象
解:1. 列表
x … -2 -1 0 1 2 …
y … -6 -3 0 3 6 …
2. 描点
3. 连线
4. 贴标签
学生对平面坐标系有所了解,但对数形结合的方法还不是很熟练,有必要给学生以示范。

课堂练习:
在同一坐标系内画下列正比例函数的图像(展示学生优秀作业)


这样的设计,主要是让学生更多熟悉数与形的结合,体会数到形的转变,还为下一步的的探究做好辅垫。
(三)分析问题、探究规律
1、如何快速画正比例函数的图像?
因为正比例函数的图像是一条直线,且经过原点,而两点确定一条直线
画正比例函数的图像时,只需描两个点,其中一个是原点,然后过这两个点画一条直线
2、正比例函数的图像与比例系数K有什么不寻常的联系吗?
为了让大家更好、更全面地观察图形和思考问题,大家再将下面三个函数的图形画出来:



整个环节由浅入深,在与他人交流合作的过程中,同学们可以借助他人的想法来激发自己的灵感,体验问题解决多样化的学习策略,积累学习数学的经验。问题一环紧扣一环,让学生逐层深入思考,既动手又动脑。


(四)观察异同、归纳总结












(1) 当k>0时,正比例函数的图像经过第一、三象限,自变量x逐渐增大时,y的值也随着逐渐增大。
(2) 当k<0时,正比例函数的图像经过第二、四象限,自变量x逐渐增大时,y的值则随着逐渐减小。
由小组讨论,小组长做好登记,由小组派代表起来发言,说出发现的结果或规律,老师及时给于肯定,并强调关键之处。
课堂练习:
滑车以每分1.5米的速度匀速地从轨道的一端滑向另一端,已知轨道的长为7米。
(1)求滑车滑行的路程S(米)和滑行时间t(分)之间的关系和自变量t取值范围;
(2)画出这个函数的图象
(3)根据图象说明当t 增大时S 随着增大还是减小?

这样的设计,可以让学生在没有压力的状态下完成同他人合作的过程,愿意表现的学生可以起来发言,在讨论和合作中,增加了分析和解决问题的能力。

(五)分享收获、课堂小结
从本节课的学习中,你获得了哪些知识:
①如何快速画正比例函数的图象
②正比例函数的性质
③数形结合的数学思想方法
④学生自身在合作,小组讨论中的一些体验和感悟(自由发挥)

这个设计,不仅用于总结本节课的重难点知识,画龙点睛,更用于发现个别学生的闪光点,及时予以评价和表扬。

(六)分层作业、能力升华
1.作业:P113.练习;P120.复习巩固1,2
2.补充练习
1.已知正比例函数y=(1+2m)x,若y随x的增大而减小,则m的取值范围是什么?
2.已知:正比例函数那么它的图像经过哪个象限?
3.已知正比例函数图像经过点(2,-6),⑴求出此函数解析式;⑵若点M(m,2)、N( ,n)在该函数图像上,求m、n的值;⑶点E(-1,4)在这个图像上吗?试说明理由;⑷若-2≤x≤5,则y的取值范围是什么;⑸若点A在这个函数图像上,AB⊥y轴,垂足B的坐标是(0,-12),求△ABO的面积.



八、教学反思
本节课不是直接了当地进行介绍、灌输,而是通过各个活动,把学生带入主动探索的活动中来,引导学生动手画图、观察、分析,归纳极大地激发了学生的学习兴趣,练习中通过学生激烈的辩论使难点得到较好的解决,再结合实例,更加深了学生对定义的了解和掌握,收到了事半功倍的效果。上过课后发现:
1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应.把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法.
2.本课的目标是让使学生会用待定系数法求正比例函数与一次函数的解析式,进而理解待定系数法 通过本节课的教学及课后反馈,我发现以下问题需要注意和改进:(1) 学生在学习了一次函数的图象和性质的基础上学习本节课,大部分学生可以很快接受,但有少部分学生理解比较吃力,究其原因,发现是前面内容掌握不牢,理解不透造成的。所以我认为在本节课前有必要对前置内容加以深化。(2)因为待定系数法是首次引入,学生对新知识的理解进入状态较慢,很多学生因为吃不透概念而烦恼,课后,许多学生找到我反映问题,说对待定系数这种说法一知半解,要求重讲本课。所以我认为本节课讲的不成功,重复讲解,效果良好。 这些都是学习函数问题时应具备的基本功


分析问题、探究规律

数形结合、动手画图

复习引入、温顾知新

分层作业、能力升华

分享收获、课堂小结

观察异同、归纳总结















y

x

o



O

1

2

3

4

-1

-2

-3

-4

-1

-2

-3

-4

1

2

3

4

x

y







O

1

2

3

4

-1

-2

-3

-4

-1

-2

-3

-4

1

2

3

4

x

y