第六单元 运算律课件(10份)

文档属性

名称 第六单元 运算律课件(10份)
格式 zip
文件大小 14.0MB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2019-05-13 16:15:24

文档简介

第 1 课时 加法交换律和加法结合律
第 六 单元 运算律
28个男生跳绳
17个女生跳绳
1、跳绳的有多少人?
28+17=45(人)
17+28=45(人)
上面两道算式的得数相同,可以写成等式:
28+17=17+28
23个女生踢毽子
你能再写几个这样的等式吗?
如果用字母a、b分别表示两个加数,上面的规律可以写成:
a+b= b+ a
两个加数相加,交换两个加数的位置,和不变,这就是加法交换律。
28个男生跳绳
17个女生跳绳
2、跳绳和踢毽子的一共有多少人?
23个女生踢毽子
 (28+17)+23
 28 +(17 +23)
=45 + 23
=68(人)
=28 + 40
=68(人)
1.观察这两道算式,他们有什么相同点和不同点?
2.猜想一下,换成其他数是不是也有这样的规律?自己举例验证一下。
(45+25)+16 45+(25+16)
(39+18)+22 39+(18+22)
上面两道算式可以写成等式吗?
(28+17)+23 28+(17+23)
算一算,下面的 里能填等号吗?
比较上面的三组算式,和同学说说有什么发现。
三个数相加,可以先把前两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,它们的和不变。这就是加法结合律。
如果用字母a、b、c分别表示三个加数,上面的规律可以写成:
(a+b)+ c = a +(b+ c)
加法交换律
加法结合律
加法交换律
加法结合律
加法交换律
加法结合律
加法结合律
加法交换律
加法结合律
=864
=651
=1162
验算略
一、猜猜看,这两个算式的结果会怎样?
二、算算看,你的猜测正确吗?
三、想想看,你认为哪个算式比较简便?
巧算
1+2+3+4+5+6+7+8+9+10
=(1+9)+(2+8)+(3+7)+(4+6)+5+10
= 40+5+10
= 55
这里运用了哪个运算律?
加法交换律和结合律
第 2 课时 运用加法运算律进行简便计算
第 六 单元 运算律
三个年级一共有多少人参加比赛?
29+46+54=

1.你能用两种不同的方法计算吗?
?
?2.比较这两种不同的方法,你认为哪种算法简便?你运用了加法的什么运算定律?

3.小组交流。
29+46+54
=75+54
=129
29+46+54
=29+(46+54)
=29+100
=129
讨论:哪种方法简便,为什么?
应用加法结合律,先算能成整百的数。
295+34+66 86+(14+79)
=295+(34+66)
=295+100
=395
=(86+14)+79
=100+79
=179
47+58+42+33 18+(159+82)
=47+33+58+42
=(47+33)+(42+58)
=80+100
=640
=18+(82+159)
=(18+82)+159
=100+159
=259
你应用了什么方法?
88
119
159
147
加法结合律,化成整十、整百的数
王大伯家的果园里有苹果树148棵,
梨树319棵,桃树281棵。一共有多少
棵果树?
148+319+281
=148+(319+281)
=148+600=748(棵)
第 3 课时 练习课
第 六 单元 运算律
回顾:前两节课我们学习了
什么内容?
a+b= b+ a
(a+b)+ c = a +(b+ c)
运用加法运算律,可以进行简便计算。
43
25
45
36
130
65
55+36+64
=55+(36 +64)
=55 +100
=155
238+402
=238+400+2
=638+2
=640
37+48+23+52
= (37 +23) +(48 +52)
=60 +100
=160
1+3+5+7+9+11+13+15+17+19
=(1 +19)+ (3 +17) + (5+15)+(7 +13 +(9 +11)
=20 +20 +20 +20 +20
=100
从一个数里连续减去两个数,
等于从这个数里减去这两个数的和。
灵活运用运算律或一些规律,
可以使计算简便。
下面各题,怎样算比较简便?
639-128-72
=639-(128+72)
=639-200
=439
523-(23+46)
=523-23-46
=500-46
=454
156-56-44
=156-56-44
=100-44
=56
347-(68+47)
=347-47-68
=100-68
=32
145
165
137
怎样可以算得很快?
一个加数不变,另一个加数增加(或减少)几,
和也随着增加(或减少)几;
210
190
220
180
230
170
240
160
250
150
在减法运算中,被减数不变,减数增加(或减少)
几,差反而会减少(或增加)几。
第 3 课时 乘法交换律和乘法结合律
第 六 单元 运算律
用字母表示
a+b=b+a
(a+b )+ c=a+(b + c)
加法结合律
加法交换律
用简便方法计算

77+72+23
=72+77+23
=72+(77+23)
=72+100
=172
(加法交换律)
(加法结合律)
①例3要求图中一共有多少个小朋友,怎样列式?
并把算式填写完整:3×5=( )×( )。
②比较等号两边的算式有什么相同和不同的地方?
③再写一些这样的式子,说说什么是乘法交换律,
用字母怎么表示?
乘法交换律:
两个数相乘,交换乘数的位置,
它们的积不变。
a×b=b×a
导学单:
①例4要求一共多少人参加比赛,用不同的综合算式解答。
②把两个算式写成一个等式,并比较等号两边的算式,有
什么共同点和不同点?
③再写出一些这样的式子,你发现了什么规律?说说什么
是乘法结合律?用字母怎样表示?
④尝试用简便方法计算:16×15×2 25×37×4

1. 交流写出的等式,你有什么发现?

2. 你写出的字母式子是怎样的?

3.3个数相乘,怎样的情况下积不变?

4. 为何先将15和2,25和4相乘,运用了什么运算定律?
乘法结合律:
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(a×b)×c=a× (b×c)
练一练:根据运算定律在下面的□里填上适当的数。
45×16 =16×□
5×(14 ×9) =(5× □)×□
(6×13)×5=13×(□ × □ )
45
14
9
6
5
37×4×5 25×13×2

37×(4×5) 13×(25×2)
2.比一比,每组上下两道题的结果是否相等?如果不相等,分别算出它们的结果;如果相等,选择一道算出结果。
=37×20
=740
=13×50
=650
600
1200
500
2700
4.你会用简便方法计算吗?
=47×(2×5)
=47×10
=470
47×2×5
4×(16×25)
=4×(25×16)
=4×25×16
=100×16
=1600
25×3×4=25×4×3=300(户)
想一想:25×16怎样计算简便?
应用了什么运算律?
25×16=25×4×4=400
第 4 课时 乘法分配率
第 六 单元 运算律
小强摆小木块,每行摆5个白木块,3个红木块,摆了4行,小强一共摆了多少个木块?(用两种方法解答)
方法一:5×4+3×4
方法二:(5+3)×4
=
(8+7)×6
先计算,再观察,你发现什么?
8×6+7×6
=
(10+5)×4
10×4+5×4
=
20×(15+9)
20×15+20×9
两个算式的结果相等吗?
=
32×(20-5)
32×20-32×5
两个数的和与一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配律。
想想乘法分配律字母公式怎样写?
a×(b+c)
(a+b)×c
= a×b + a×c
= a×c + b×c
在( )里填上适当的数。
(15+20) x 12 = ( ) x 12 + ( ) x 12
25 x ( 4 + 9 ) = ( ) x 4 + ( ) x 9
(10+7) x 6 = ( ) x 6 + ( ) x 6
8 x (125 + 9) = 8 x ( ) + 8 x ( )
8 x ( 10 + 5 ) = ( ) x ( ) + ( ) x ( )
7 x 48 + 7 x 52 = ( ) x ( + )
5 x ( a + b ) = ( ) x ( ) + ( ) x ( )
▲ x ( ■+●) = ( ) x ( ) + ( ) x ( )
15
20
25
25
8
10
5
8
10
7
125
9
7
48
52
a
b
5
5




把左右两边相等的算式用线连起来。
48x12+52x12 15x18+26x18
(15+18)x26 25x40+25x4
25x(40+4) (48+52)x12
14x(45-5) 11x4+25x4
(11x25)x4 14x45-14x5
先按运算顺序计算,再用乘法分配律计算。

(80+4)×25 (80+4)×25


=84 ×25
=2100
=80 ×25+4 ×25
=2000 +100
=2100
用运算定律,能使计算简便。

×72+ ×28
=(72+28) ×34
=100 ×34
=3400
仔细观察下面两个算式特征,用运算定律计算:
(40+4) ×25 (40×4) ×25
=40×25+4×25
=1000+100
=1100
=40×(4×25)
=40×100
=4000
乘法分配律
乘法结合律
你能用两种方法计算吗?
88×125
法一: 方法二:
88×125
=8×11×125
=11× (8×125)
=11× 1000
=11000
88×125
=(80+8)×125
=80×125+8×125
=10000+1000
=11000
乘法结合律
乘法分配律
(4+6) x 9
方法一: 方法二:
4 x 9+6 x 9
=
乘法分配律
我能行:
39 ×101
=39 ×(100+1)
=39 ×100 + 39 ×1
=3900 + 39
=3939
(42+35)×2
填一填
=42○□+□○□
×
2
×
2
35
16×(40+5)
=□○□○□○□
×
40
×
5
16
16
+
32×(b-c)
=□○□○□○□
×
b
×
c
32
32

8×47+8×53
填一填
=□○(□○□)
×
+
53
47
8
5×26+54×5
=□○(□○□)
×
+
54
26
5
63×99+63
也能应用乘法分配律吗?
=□○(□○□)
×
+
1
99
63
79×101-79
=□○(□○□)
×

1
101
79
也能应用乘法分配律吗?
99×46
=□○(□○□)
×

1
100
46
=□○□○□○□
×
100
×
1
46
46

也能应用乘法分配律吗?
125×88
=□○(□○□)
×
+
8
80
125
=□○□○□○□
×
80
×
8
125
125
+
也能应用乘法分配律吗?
第 5 课时 乘法分配律
第 六 单元 运算律
回顾:
乘法交换律:
a×b = b × a
乘法结合律:
(a×b)×c = a×(b × c)
1. 根据问题情境,用两种方法,列综合算式解答。
2.联系实际问题想一想,这两个算式表示的意义有什么联系?
3. 你能写出与(30+15)×2相等的算式吗?(口算验证是否正确)
4. 仿照着再写几组这样的算式,算一算,每组两道能不能组成等式,你有什么发现?
5. 联系之前学习乘法运算律的经验,你能用字母式子表示出上面算式反映的规律吗?
小组交流:
1.说说列出的两道综合算式,它们有什么相同和不同的地方。
2. 与(30+15)×2相等的算式是?
3.观察写出的等式,你有什么发现?
4.你写出的字母式子是怎样的?
这就是乘法分配律
a×c
b×c
+
1.在□里填数,在○里填运算符号。
①(42+35)×2?=?42×□+35×□
② 27×12+43×12=(27+□)×□
③ 15×26+15×14= □ ○(□+□)?

④ 72×(30+6)= □○□○□○□
2
2
43
12
15
×
26
14
72
×
30
+
72
×
6
书63页练一练1



(40+90)×50
40×50 +40×90
25×(40-4) 50×7-20×7
你能写出与下面算式相等的式子吗,
计算检验,你有什么发现?
乘法分配律也适用于减法。
=25×40-25×4
=900
=(50-20)×7
=210
第 6 课时 应用乘法分配律进行简便计算
第 六 单元 运算律
29×56 + 56×31=(□○□)○□
(40+7)×12= □○□○□○□
在□里填数,在○里填运算符号。(书64页练一练1)
40
×
×
×


12
7
12
29
31
56
两个数的和与一个数相乘,等于这两个数
分别与这个数相乘,再把两个乘积相加。
乘法分配律
(a+b)×c=a×c+b×c
观察下列每组里哪一题计算比较简便。
(1)24×8+76×8 (2)73×(100+1)
(24+76)×8 73×100+73×1
导学单:
1. 根据问题情境,列出算式,想一想可以怎样计算得数?(有困难可以翻看书本第63页例6)
2.口算时是把哪个数分成两个部分计算的?
3.完成第64页填空,想一想这样算简便吗,应用了什么运算律?
小组交流单:
1.说说你是怎样口算32×102的?
2.把102看成是哪两个数的和来算?
3.这样算简便吗?为什么会简便,应用了什么运算律?
用口算:
100副是3200元,
2副是64元,
一共是3264元。
32×102=
3264(元)
为什么可以这样计算?
应用乘法分配律。
32×102
=32×100+32×2
=3200+64
=3264
=32×(100+2)
(20+3)×3
= 20×3+3×3
= 60+9
= 69
4×(10+2)
= 4×10+4×2
= 40+8
= 48
(10+6)×5
= 10×5+6×5
= 50+30
= 80
2×(40+8)
= 2×40+2×8
= 80+16
= 96
(书66页练习十8)
(书66页试一试)
用简便方法计算,并说说应用了什么运算规律。
46 ×12 + 54 ×12
(书64页练一练2)
或: 56×16+24×16
=(56+24)×16
=80×16
=1280(元)
答:共用1280元。
(书66页练习十10)
(书66页练习十11)
第 7 课时 练习课
第 六 单元 运算律
观察下列等式,想想各应用了什么运算律?
乘法交换律
乘法结合律
乘法分配律
乘法交换和结合律
辨一辨:判断下面的简便计算对不对,不对的怎样改正?需应用哪个运算律 ?
25×(3×4)=25×3+25×4=75+100=175



35×(8+2)=35×2×8=70×8=560
×
乘法交换律
25×(3×4)=25×4×3=100×3=300
乘法分配率
35×(8+2)=35×8+35×2=350
也可以直接计算 35×10=350
×
二、练一练:
用简便方法计算,独立完成。
小结:
简便计算就是应用运算律或计算规律,把能凑成整百、整十,整千,的数先算出来,再接着计算最后的得数。
三、比一比:每组两题,说说有什么联系?
(1)15×(29+1) (2)12×(59+1)

15×29+15×1 12×59+12
每组两题结果相同。主要是乘法分配律的应用。
(2)算一算,比一比,你有什么发现?




下面各题怎样算简便就怎样算。
(3)算算下面每组的两道算式是否相等,再说说你有什么发现。
你会简便方法计算吗?
104×18
=(100+4)×18
=100×18+4×18=1800+72
=1872(平方米)
答:这些草坪的面积一共是1872平方米
4×5×24=20×24=480(张)
答:一共需要480张课桌。
第 8 课时 相遇问题
第 六 单元 运算律
(1) 想一想:“同时”“相遇”“相距”三个词的意思。
(2)试一试:用以前画图或列表的方法整理题目中的条件和问题。
(3)做一做:尝试解答。
(4)议一议:小组交流后全班汇报。
与前两题比一比,他们之间有什么区别与联系?
总结:
行程策略有个宝,请你画图或列表。
两点之间一条线,明确方向最重要。
整理信息是关键,理清思路要记牢。
掌握方法列式好, 学习就会变轻巧。
第 9 课时 练习课
第 六 单元 运算律

60×5+64×5
=300+320
=620(米)
(60+64)×5
=124×5
=620(米)
答:小星家和小明家相距620米。
64×5-60×5
=320-300
=20(米)
(64-60)×5
=4×5
=20(米)
答:这时小星离少年宫还有20米。

90×3-75×3
=270-225
=45(千米)
(90-75)×3
=15×3
=45(千米)
90×3+75×3
=270+225
=495(千米)
(90+75)×3
=165×3
=495(千米)
答:两辆卡车相距45千米。
答:3小时后相距495千米。

980÷7=140(个)
81+60>140
答:安排刘师傅和赵师傅比较合适。
15+18+12=15+(18+12)=45
a+b+c=a+(b+c)
15×18=18×15
a+b+c=a+(b+c)
15×18=18×15
ab=bc
15×25×4=15×(25×4)=1500
(a+b)×c=a×c+b×c
(100+2)×4=100×4+2×4=408
a×b×c=a×(b×c)
(65+70) x 5
=135 x 5
=675(米)
675÷3=225(米)
答:这座桥长225米。