§1.1 空间几何体的结构
第1课时 棱柱、棱锥、棱台的结构特征
学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单几何体的结构和有关计算.
知识点一 空间几何体的定义、分类及相关概念
思考 构成空间几何体的基本元素是什么?常见的几何体可以分成哪几类?
答案 构成空间几何体的基本元素是:点、线、面.常见几何体可以分为多面体和旋转体.
梳理
类别
多面体
旋转体
定义
由若干个平面多边形围成的几何体
由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体
图形
相关概念
面:围成多面体的各个多边形
棱:相邻两个面的公共边
顶点:棱与棱的公共点
轴:形成旋转体所绕的定直线
知识点二 棱柱的结构特征
名称
定义
图形及表示
相关概念
分类
棱柱
有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱
如图可记作:棱柱ABCDEF—
A′B′C′D′E′F′
底面(底):两个互相平行的面
侧面:其余各面
侧棱:相邻侧面的公共边
顶点:侧面与底面的公共顶点
按底面多边形的边数分:三棱柱、四棱柱、……
知识点三 棱锥的结构特征
名称
定义
图形及表示
相关概念
分类
棱
锥
有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥
如图可记作:棱锥S—ABCD
底面(底):多边形面
侧面:有公共顶点的各个三角形面
侧棱:相邻侧面的公共边
顶点:各侧面的公共顶点
按底面多边形的边数分:三棱锥、四棱锥、……
知识点四 棱台的结构特征及棱柱、棱锥、棱台之间的关系
1.棱台的结构特征
名称
定义
图形及表示
相关概念
分类
棱
台
用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台
如图可记作:棱台ABCD—A′B′C′D′
上底面:平行于棱锥底面的截面
下底面:原棱锥的底面
侧面:其余各面
侧棱:相邻侧面的公共边
顶点:侧面与上(下)底面的公共顶点
由三棱锥、四棱锥、五棱锥……
截得的棱台分别叫做三棱台、四棱台、五棱台……
2.棱柱、棱锥、棱台之间的关系
1.棱柱的底面互相平行.( √ )
2.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.( × )
3.若一个平行六面体的两个对角面都是矩形,则这个平行六面体一定是直平行六面体.( √ )
4.棱柱的各个侧面都是平行四边形.( √ )
5.棱柱的两个底面是全等的多边形.( √ )
类型一 棱柱、棱锥、棱台的结构特征
例1 下列关于棱柱的说法:
(1)所有的面都是平行四边形;
(2)每一个面都不会是三角形;
(3)两底面平行,并且各侧棱也平行.
其中正确说法的序号是________.
答案 (3)
解析 (1)错,底面可以不是平行四边形;(2)错,底面可以是三角形;(3)正确,由棱柱的定义可知.
反思与感悟 棱柱结构特征的辨析方法
(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.
①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;
②看“线”,即观察每相邻两个四边形的公共边是否平行.
(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.
跟踪训练1 下列说法正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C.棱柱的侧棱总与底面垂直
D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形
答案 D
解析 选项A,B都不正确,反例如图所示,C错误,棱柱的侧棱可能与底面垂直,也可能不垂直.根据棱柱的定义知D正确.
例2 (1)下列三种叙述,正确的有( )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
答案 A
解析 ①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.
(2)下列说法中,正确的是( )
①棱锥的各个侧面都是三角形;
②四面体的任何一个面都可以作为棱锥的底面;
③棱锥的侧棱平行.
A.① B.①② C.② D.③
答案 B
解析 由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故②正确;棱锥的侧棱交于一点不平行,故③错.
反思与感悟 判断棱锥、棱台的方法
(1)举反例法
结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.
(2)直接法
棱锥
棱台
定底面
只有一个面是多边形,此面即为底面
两个互相平行的面,即为底面
看侧棱
相交于一点
延长后相交于一点
跟踪训练2 下列关于棱锥、棱台的说法:
①棱台的侧面一定不会是平行四边形;
②由四个平面围成的封闭图形只能是三棱锥;
③棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是________.
答案 ①②
解析 ①正确,棱台的侧面一定是梯形,而不是平行四边形;
②正确,由四个平面围成的封闭图形只能是三棱锥;
③错误,如图所示的四棱锥被平面截成的两部分都是棱锥.
类型二 多面体的识别和判断
例3 如图所示,长方体ABCD-A1B1C1D1.
(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?
(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.
解 (1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面,是互相平行的,其余各面都是矩形,且四条侧棱互相平行,符合棱柱的定义.
(2)截面BCNM右上方部分是三棱柱BB1M-CC1N,左下方部分是四棱柱ABMA1-DCND1.
引申探究
把本例3的几何体换成如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.
解 截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.
反思与感悟 解答识别和判断多面体的题目的关键是正确掌握棱柱的几何特征,在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置.
跟踪训练3 如图所示,关于该几何体的正确说法有________.(填序号)
①这是一个六面体;
②这是一个四棱台;
③这是一个四棱柱;
④此几何体可由三棱柱截去一个三棱柱得到;
⑤此几何体可由四棱柱截去一个三棱柱得到.
起点 空间几何体
题点 空间几何体结构判断
答案 ①③④⑤
解析 ①正确,因为有六个面,属于六面体的范畴;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,若把几何体放倒就会发现是一个四棱柱;④⑤都正确,如图所示.
类型三 多面体的平面展开图
例4 在长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.
解 沿长方体的一条棱剪开,使A和C1在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:
(1)若将C1D1剪开,使点A,B,C1,D1在一个平面内,可求得AC1===4.
(2)若将AD剪开,使点A,D,C1,B1在一个平面内,可求得AC1===3.
(3)若将CC1剪开,使点A,A1,C,C1在一个平面内,可求得AC1==.
相比较可得蚂蚁爬行的最短路线长为.
反思与感悟 (1)多面体侧面上两点间的最短距离问题常常要归纳为求平面上两点间的最短距离问题,常见的解法是先把多面体侧面展开成平面图形,再用平面几何的知识来求解.
(2)解答展开与折叠问题,要结合多面体的定义和结构特征,发挥空间想象能力,必要时可制作平面展开图进行实践.
跟踪训练4 如图是三个几何体的侧面展开图,请问各是什么几何体?
解 ①为五棱柱;②为五棱锥;③为三棱台.
1.下面多面体中,是棱柱的有( )
A.1个 B.2个
C.3个 D.4个
答案 D
解析 根据棱柱的定义进行判定知,这4个图都满足.
2.观察如图所示的四个几何体,其中判断不正确的是( )
A.①是棱柱
B.②不是棱锥
C.③不是棱锥
D.④是棱台
答案 B
解析 结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.
3.下列说法中正确的是( )
A.棱柱的面中,至少有两个面互相平行
B.棱柱中两个互相平行的平面一定是棱柱的底面
C.棱柱中一条侧棱就是棱柱的高
D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形
答案 A
解析 棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面可以是平行四边形,也可以是其他多边形,故D错.
4.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)( )
答案 A
解析 两个相同的图案一定不能相邻,故B,C,D错误,只有A正确.
5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________ cm.
答案 12
解析 因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为=12(cm).
1.棱柱、棱锥定义的关注点
(1)棱柱的定义有以下两个要点,缺一不可:
①有两个平面(底面)互相平行;
②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.
(2)棱锥的定义有以下两个要点,缺一不可:
①有一个面(底面)是多边形;
②其余各面(侧面)是有一个公共顶点的三角形.
2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.
一、选择题
1.下面多面体中有12条棱的是( )
A.四棱柱 B.四棱锥
C.五棱锥 D.五棱柱
答案 A
解析 ∵n棱柱共有3n条棱,n棱锥共有2n条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A.
2.有两个面平行的多面体不可能是( )
A.棱柱 B.棱锥
C.棱台 D.以上都错
答案 B
解析 由棱锥的结构特征可得.
3.下列关于棱柱的说法中,错误的是( )
A.三棱柱的底面为三角形
B.一个棱柱至少有五个面
C.若棱柱的底面边长相等,则它的各个侧面全等
D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形
答案 C
解析 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,故C错误;D正确,故选C.
4.下面图形中是正方体展开图的是( )
答案 A
解析 由正方体表面展开图性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且下边没有面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.
5.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )
A.三棱锥 B.四棱锥
C.三棱柱 D.三棱台
答案 B
解析 由题图知剩余的部分是四棱锥A′-BCC′B′.
6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )
A.1∶2 B.1∶4 C.2∶1 D.4∶1
答案 B
解析 由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.
7.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )
A.棱柱 B.棱台
C.棱柱与棱锥的组合体 D.不能确定
答案 A
解析 根据图可判断为底面是梯形或三角形的棱柱.
8.如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )
A.(1)(2) B.(2)(3)
C.(3)(4) D.(1)(4)
答案 B
解析 (1)图还原后,①⑤对面,②④对面,③⑥对面;
(2)图还原后,①④对面,②⑤对面,③⑥对面;
(3)图还原后,①④对面,②⑤对面,③⑥对面;
(4)图还原后,①⑥对面,②⑤对面,③④对面;
综上,可得还原成正方体后,其中两个完全一样的是(2)(3).
9.在五棱柱中,不同在同一个侧面且不同在同一个底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )
A.20 B.15 C.12 D.10
答案 D
解析 如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).
10.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成的三棱锥的个数是( )
A.1 B.2
C.3 D.0
答案 C
解析 如图,分割为A1-ABC,B-A1CC1,C1-A1B1B,3个棱锥.
二、填空题
11.如图,能推断这个几何体可能是三棱台的是________.(填序号)
①A1B1=2,AB=3,B1C1=3,BC=4;
②A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3;
③A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4;
④A1B1=AB,B1C1=BC,C1A1=CA.
答案 ③
解析 因为三棱台的上下底面相似,所以该几何体如果是三棱台,则△A1B1C1∽△ABC,
所以==.故选③.
12.一个长方体共顶点的三个面的面积分别是,,,则这个长方体对角线的长是________.
考点 棱柱的结构特征
题点 与棱柱有关的运算
答案
解析 设长方体长、宽、高为x,y,z,
则yz=,xz=,yx=,
三式相乘得x2y2z2=6,即xyz=,
解得x=,y=,z=1,
所以==.
三、解答题
13.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干个点,连接后构成以下空间几何体,并且用适当的符号表示出来.
(1)只有一个面是等边三角形的三棱锥;
(2)四个面都是等边三角形的三棱锥;
(3)三棱柱.
解 (1)如图所示,三棱锥A1-AB1D1(答案不唯一).
(2)如图所示,三棱锥B1-ACD1(答案不唯一).
(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).
四、探究与拓展
14.如图,已知正三棱锥P-ABC的侧棱长为,底面边长为,Q是侧棱PA的中点,一条折线从A点出发,绕侧面一周到Q点,则这条折线长度的最小值为________.
答案
解析 沿着棱PA把三棱锥展开成平面图形,
所求的折线长度的最小值就是线段AQ的长度,因为点Q是PA′的中点,所以在展开图中,AQ=,故答案为.
15.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.
解 如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.
如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的,有一组对角为直角,余下部分按虚线三角形的边折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.
第2课时 旋转体与简单组合体的结构特征
学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.
知识点一 圆 柱
思考 圆柱是比较常见的一类旋转体,那么,它是怎样形成的?
答案 以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的几何体.
梳理
圆柱
图形及表示
定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱
图中圆柱表示为圆柱O′O
相关概念:
圆柱的轴:旋转轴
圆柱的底面:垂直于轴的边旋转而成的圆面
圆柱的侧面:平行于轴的边旋转而成的曲面
圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边
知识点二 圆 锥
圆锥
图形及表示
定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体
图中圆锥表示为圆锥SO
相关概念:
圆锥的轴:旋转轴
圆锥的底面:垂直于轴的边旋转而成的圆面
侧面:直角三角形的斜边旋转而成的曲面
母线:无论旋转到什么位置 ,不垂直于轴的边
知识点三 圆 台
圆台
图形及表示
定义:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台
旋转法定义:以直角梯形中垂直于底边的腰所在直线为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转体叫做圆台
图中圆台表示为:圆台O′O
相关概念:
圆台的轴:旋转轴
圆台的底面:垂直于轴的边旋转一周所形成的圆面
圆台的侧面:不垂直于轴的边旋转一周所形成的曲面
母线:无论旋转到什么位置,不垂直于轴的边
知识点四 球
球
图形及表示
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球
图中的球表示为球O
相关概念:
球心:半圆的圆心
半径:半圆的半径
直径:半圆的直径
知识点五 简单组合体
(1)概念:由简单几何体组合而成的,这些几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组合而成的.
(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.
1.直角三角形绕一边所在直线旋转得到的旋转体是圆锥.( × )
2.圆锥截去一个小圆锥后剩余部分是圆台.( √ )
3.夹在圆柱的两个平行截面间的几何体是一圆柱.( × )
4.半圆绕其直径所在直线旋转一周形成球.( × )
类型一 旋转体的结构特征
例1 下列说法正确的是________.
①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;
②圆柱、圆锥、圆台的底面都是圆;
③以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;
④半圆面绕其直径所在直线旋转一周形成球;
⑤用一个平面去截球,得到的截面是一个圆面.
答案 ③④⑤
解析 ①以直角梯形垂直于底边的一腰所在直线为轴旋转一周可得到圆台;②它们的底面为圆面;③④⑤正确.
反思与感悟 (1)判断简单旋转体结构特征的方法
①明确由哪个平面图形旋转而成.
②明确旋转轴是哪条直线.
(2)简单旋转体的轴截面及其应用
①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.
②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.
跟踪训练1 下列说法,正确的是( )
①圆柱的母线与它的轴可以不平行;
②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;
③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;
④圆柱的任意两条母线所在直线是互相平行的.
A.①② B.②③ C.①③ D.②④
答案 D
解析 由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.
类型二 简单组合体
例2 直角梯形ABCD如图所示,分别以CD,DA所在直线为轴旋转,试说明所得几何体的形状.
解 以CD为轴旋转可得到一个圆台,下底挖去一个小圆锥,上底增加一个较大的圆锥,以AD为轴旋转可得到一个圆柱,上面挖去一个圆锥,如图所示.
引申探究
本例中直角梯形分别以AB,BC所在直线为轴旋转,试说明所得几何体的形状.
解 以AB为轴旋转可得到一个圆台,以BC为轴旋转可得一个圆柱和圆锥的组合体,如图所示.
反思与感悟 (1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.
(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力或亲自动手做出平面图形的模型来分析旋转体的形状.
跟踪训练2 将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )
A.一个圆台、两个圆锥 B.两个圆柱、一个圆锥
C.两个圆台、一个圆柱 D.一个圆柱、两个圆锥
答案 D
解析 图1是一个等腰梯形,CD为较长的底边,以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图2,包括一个圆柱、两个圆锥.
类型三 旋转体的有关计算
例3 一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:
(1)圆台的高;
(2)将圆台还原为圆锥后,圆锥的母线长.
解 (1)圆台的轴截面是等腰梯形ABCD(如图所示).
由已知可得O1A=2 cm,OB=5 cm.
又由题意知腰长为12 cm,
所以高AM==3(cm).
(2)如图所示,延长BA,OO1,CD,交于点S,
设截得此圆台的圆锥的母线长为l,
则由△SAO1∽△SBO,可得=,
解得l=20(cm).
即截得此圆台的圆锥的母线长为20 cm.
反思与感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.
跟踪训练3 有一根长为3π cm,底面半径为1 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.
解 把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图所示),
由题意知BC=3π cm,AB=4π cm,点A与点C分别是铁丝的起、止位置,故线段AC的长度即为铁丝的最短长度.
AC==5π cm,
故铁丝的最短长度为5π cm.
1.下列几何体是台体的是( )
答案 D
解析 台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.
2.下列选项中的三角形绕直线l旋转一周,能得到如图1中的几何体的是( )
图1
答案 B
解析 由题意知,所得几何体是组合体,上、下各一圆锥,故B正确.
3.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是( )
A.圆柱 B.圆台 C.球体 D.棱台
答案 D
解析 圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D.
4.若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为________.
答案 2
解析 如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=AB2,∴=AB2,∴AB=2.故圆锥的母线长为2.
5.一个有30°角的直角三角板绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么图形?旋转360°又得到什么图形?
解 (1),(2)旋转一周得到的几何体是圆锥;
图(3)旋转一周所得几何体是两个圆锥拼接而成的几何体;
图(4)旋转180°是两个半圆锥的组合体,旋转360°,旋转轴左侧的直角三角形旋转得到的圆锥隐藏于右侧直角三角形旋转得到的圆锥内.
1.圆柱、圆锥、圆台的关系如图所示.
2.球面、球体的区别和联系
区别
联系
球面
球的表面是球面,球面是旋转形成的曲面
球面是球体的表面
球体
球体是几何体,包括球面及所围的空间部分
3.处理台体问题常采用还台为锥的补体思想.
4.处理组合体问题常采用分割思想.
5.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.
一、选择题
1.下列几何体中不是旋转体的是( )
答案 D
2.下列说法正确的是( )
A.到定点的距离等于定长的点的集合是球
B.球面上不同的三点可能在同一条直线上
C.用一个平面截球,其截面是一个圆
D.球心与截面圆心(截面不过球心)的连线垂直于该截面
答案 D
解析 对于A,球是球体的简称,球体的外表面我们称之为球面,球面是一个曲面,是空心的,而球是几何体,是实心的,故A错;对于B,球面上不同的三点一定不共线,故B错;对于C,用一个平面截球,其截面是一个圆面,而不是一个圆,故C错,故选D.
3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )
A.一个球体
B.一个球体中间挖去一个圆柱
C.一个圆柱
D.一个球体中间挖去一个长方体
答案 B
解析 圆面绕着直径所在的轴,旋转而形成球,矩形绕着轴旋转而形成圆柱. 故选B.
4.如图所示的几何体是由下面哪一个平面图形旋转而形成的( )
答案 A
解析 此几何体自上向下是由一个圆锥、两个圆台和一个圆柱构成,是由A中的平面图形旋转而形成的.
5.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为( )
A.10 cm B.20 cm
C.20 cm D.10 cm
答案 A
解析 如图所示,在Rt△ABO中,
AB=20 cm,∠A=30°,
所以AO=AB·cos 30°=20×=10(cm).
6.如图所示的几何体,关于其结构特征,下列说法不正确的是( )
A.该几何体是由两个同底的四棱锥组成的
B.该几何体有12条棱、6个顶点
C.该几何体有8个面,并且各面均为三角形
D.该几何体有9个面,其中一个面是四边形,其余均为三角形
答案 D
解析 其中ABCD不是面,该几何体有8个面.
7.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )
A.32 B. C. D.
答案 B
解析 如图所示,设底面半径为r,若矩形的长8为卷成圆柱底面的周长,则2πr=8,所以r=;同理,若矩形的宽4为卷成圆柱的底面周长,则2πr=4,所以r=,
当r=时,其轴截面的面积为×4=,
当r=时,其轴截面的面积为×8=,
故选B.
8.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的,现用一个平面去截这个几何体,若这个平面平行于底面,则截面图形为( )
答案 C
解析 截面图形应为图C所示的圆环面.
9.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列图形中的( )
答案 C
解析 易知截面是一个非等边的等腰三角形,排除A,D;等腰三角形的底边是正三棱锥的一条棱,这条棱不可能与内切球有交点,所以排除B;而等腰三角形的两条腰正好是正三棱锥两个面的中线,且经过内切球在两个面上的切点,所以正确答案是C.
二、填空题
10.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.
答案 两个同底的圆锥组合体
解析 由圆锥的定义知是两个同底的圆锥形成的组合体.
11.如图中的组合体的结构特征有以下几种说法:
①由一个长方体割去一个四棱柱构成;
②由一个长方体与两个四棱柱组合而成;
③由一个长方体挖去一个四棱台构成;
④由一个长方体与两个四棱台组合而成.
其中说法正确的序号是________.
答案 ①②
12.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.
答案
解析 由题意知一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以母线长为l=2,又半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径为r=1,所以该圆锥的高为h=== .
三、解答题
13.已知一个圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,这个内接正方体的顶点在圆锥的底面和侧面上,求此正方体的棱长.
解 作出圆锥的一个纵截面如图所示,
其中AB,AC为母线,BC为底面圆直径,DG,EF是正方体的棱,DE,GF是正方体的上、下底面的对角线,设正方体的棱长为x,
则DG=EF=x,DE=GF=x,依题意,得△ABC∽△ADE,
∴=,
∴x=.
四、探究与拓展
14.指出图中的三个几何体分别是由哪些简单几何体组成的.
解 (1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.
(2)几何体由一个六棱柱和一个圆柱拼接而成.
(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.
15.圆台的上、下底面半径分别为5 cm,10 cm,母线长AB=20 cm,从圆台母线AB的中点M拉一条绳子绕圆台侧面转到点A,求:
(1)绳子的最短长度;
(2)在绳子最短时,上底圆周上的点到绳子的最短距离.
解 (1)如图所示,将侧面展开,绳子的最短距离为侧面展开图中AM的长度,
设OB=l,
则θ·l=2π×5,θ·(l+20)=2π×10,
解得θ=,l=20 cm.
∴OA=40 cm,OM=30 cm.
∴AM==50 cm.
即绳子最短长度为50 cm.
(2)作OQ⊥AM于点Q,交弧BB′于点P,
则PQ为所求的最短距离.
∵OA·OM=AM·OQ,∴OQ=24 cm.
故PQ=OQ-OP=24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.