21.5 反比例函数
第1课时 反比例函数
1.领会反比例函数的意义,理解并掌握反比例函数的概念;(重点)
2.会判断一个函数是否是反比例函数;(重点)
3.会求反比例函数的表达式.(难点)
一、情境导入
你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.
一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?
二、合作探究
探究点一:反比例函数的概念
【类型一】 辨别反比例函数
在下列反比例函数表达式中,哪些函数表示y是x的反比例函数?
(1)y=; (2)y=; (3)y=;
(4)xy=; (5)y=; (6)y=-;
(7)y=2x-1; (8)y=(a≠5,a是常数).
解析:根据反比例函数的概念,必须是形如y=(k是常数,k≠0)的函数,才是反比例函数.如(2)(3)(6)(8)均符合这一概念的要求,所以它们都是反比例函数.但还要注意y=(k是常数,k≠0)的一些常见的变化形式,如xy=k,y=kx-1等,所以(4)(7)也是反比例函数.在(5)中,y是(x-1)的反比例函数,而不是x的反比例函数.(1)中的y是x的正比例函数.故(2)(3)(4)(6)(7)(8)表示y是x的反比例函数.
方法总结:判断一个函数是否是反比例函数,关键看它能否写成y=(k是常数,k≠0)或xy=k(k≠0)及y=kx-1(k≠0)的形式,即两个变量的积是不是一个非零常数.如果两个变量的积是一个不为0的常数,则这两个变量就是反比例关系;否则便不成反比例关系.
【类型二】 根据反比例函数的概念求值
若y=(k2+k)xk2-2k-1是反比例函数,试求(k-3)2015的值.
解:根据反比例函数的概念,得
所以
即k=2.
因此(k-3)2015=(2-3)2015=-1.
易错提醒:反比例函数表达式的一般形式y=(k是常数,k≠0)也可以写成y=kx-1(k≠0),利用反比例函数的定义求字母参数的值时,一定要注意y=中k≠0这一条件,不能忽略,否则易造成错误.
探究点二:确定反比例函数的表达式
【类型一】 利用待定系数法求反比例函数的表达式
已知y是x的反比例函数,当x=-4时,y=3.
(1)写出y与x的函数表达式;
(2)当x=-2时,求y的值;
(3)当y=12时,求x的值.
解:(1)设y=(k≠0),∵当x=-4时,y=3,∴3=,解得k=-12.因此,y与x的函数表达式为y=-;
(2)把x=-2代入y=-,得y=-=6;
(3)把y=12代入y=-,得12=-,x=-1.
方法总结:(1)求反比例函数表达式时常用待定系数法,先设其表达式为y=(k≠0),然后再求出k值;(2)当反比例函数的表达式y=(k≠0)确定以后,已知x(或y)的值,将其代入表达式中即可求得相应的y(或x)的值.
【类型二】 利用待定系数法求组合型函数的表达式
已知y=y1+y2,其中y1与x成正比例关系,y2与x成反比例关系,并且当x=2时,y=-4;当x=-1时,y=5.求y与x的函数表达式.
解:∵y1与x成正比例关系,∴设y1=k1x(k1≠0).
∵y2与x成反比例关系,∴设y2=(k2≠0).∴y=k1x+.
把x=2,y=-4及x=-1,y=5代入y=k1x+,得解得
∴y=-x-.
易错提醒:当一个函数的表达式由若干个常见的函数(正比例函数、反比例函数等)组成时,它们各自有待定系数,不能一律为k.本题易出现设y1=kx(k≠0),y2=(k≠0)的形式,导致两个待定系数都是k的错误.
探究点三:列反比例函数关系式
如图所示,某学校广场有一段25米长的旧围栏(图中用线段AB表示).现打算利用该围栏的一部分(或全部)为一边建成一块面积为100平方米的矩形草坪(图中的矩形CDEF,CD(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若利用旧围栏12米,则计划修建费用应为多少元?
解析:可先利用面积把长与宽表示出来,求出y与x之间的关系,再利用x=12求出y的值.
解:(1)∵S矩形CDEF=100,CF=x,∴CD=,∴y=1.75x+4.5(x+)=6.25x+(10(2)由(1)知y=6.25x+(10方法总结:解此类题型,首先要理解题意,然后根据已知条件选择合适的数学模型,最后根据实际情况确定自变量的取值范围.
三、板书设计
反比例函数
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象.利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,从而培养学生学习数学的兴趣.
21.5 反比例函数
第1课时 反比例函数
教学思路
(纠错栏)
教学思路
(纠错栏)
教学目标:
1.知道反比例函数的意义,掌握反比例函数的一般形式.
2.学会建立反比例函数关系式解决问题的方法.
3.通过探索反比例函数的过程,提高分析问题、解决问题的能力.
教学重点:理解和领会反比例函数的概念。
预设难点:领悟反比例函数的概念。
☆ 预习导航 ☆
一、链接:
1、什么叫正比例函数?写出它们的一般式.
2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,电流I和电阻R成 比例关系;
3、当一个矩形的面积一定时,长和宽成 比例关系.(填“正”“反”)
二、导读
1、某村有耕地200hm2,人口数量x逐年发生变化。干村人均占有的耕地面积yhm2与人口数量之间有怎样的关系?
2、某市距省城248km,汽车有该市驶往省城,汽车行驶全程所需时间th,与形式的平均速度vkm/h之间有怎样的关系?
3、当电压一定时,通过电阻的电流I与电阻R有怎样的关系?
上述函数关系式都具有的形式,两个变量之间的关系就是小学学过的反比例关系。由此给出反比例函数的概念:
一般地,函数(k为常数,且k≠0)叫做反比例函数。反比例函数的自变量x不能为零.
☆ 合作探究 ☆
1、当n取何值时,y=(n2+2n)是反比例函数?
2、已知y+3与x成反比例,且当x=1时,y=4,求出函数表达式,并判断是哪类函数?
3、一定质量的氧气放在容器中,体积V与它的密度ρ成反比例函数,当它的体积V是10m3时,它的密度ρ=1.43kg/m3。
(1)写出ρ与V的函数关系;
(2)当氧气密度是7.15 kg/m3时,容器的容积是多少m3.
☆ 归纳反思 ☆
我们教学了反比例函数的定义,并归纳总结出反比例函数的表达式为 (k为常数,k≠0),自变量x .
☆ 达标检测 ☆
1.下列函数中,哪些y是x的反比例函数?
,,,, xy = 5,
2.若函数y=(m+1)是反比例函数,求m的值.
3.已知参加施工的人数y与完成某项工程的时间x天成反比例关系。当施工人数为4时,10天能完成这项工程。现要求8天完成这项工程,应选派多少人去施工?
第2课时 反比例函数的图象和性质
1.会用描点法画出反比例函数的图象,并掌握反比例函数图象的特征;(重点)
2.理解并掌握反比例函数的性质.(重点)
一、情境导入
已知某面粉厂加工出4000吨面粉,厂方决定把这些面粉全部运往B市.
所需要的时间t(天)和每天运出的面粉总重量m(吨)之间有怎样的函数关系?你能在平面直角坐标系中形象地画出这个函数关系的图象吗?
二、合作探究
探究点一:反比例函数的图象和性质
【类型一】 反比例函数图象的画法
在同一平面直角坐标系中画出反比例函数y=和y=-的图象.
解:(1)列表:
x
…
-3
-2
-1
1
2
3
…
y=
…
-
-
-5
5
…
y=-
…
5
-5
-
-
…
(2)描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.
(3)连线:在各象限内,分别用光滑的曲线顺次连接各点,即可得到函数y=和y=-的图象,如图.
【类型二】 反比例函数的性质
在反比例函数y=-的图象上有三点(x1,y1),(x2,y2),(x3,y3),若x1>x2>0>x3,则下列各式正确的是( )
A.y3>y1>y2 B.y3>y2>y1
C.y1>y2>y3 D.y1>y3>y2.
解析:本题方法较多,一是根据x1,x2,x3的大小即可比较;二是画出草图,根据反比例函数的性质比较;三是利用特值法.
(方法一)比较法:由题意,得y1=-,y2=-,y3=-,因为x1>x2>0>x3,所以y3>y1>y2.
(方法二)图象法:
如图,在直角坐标系中做出y=-的草图,描出符合条件的三个点,观察图象直接得到y3>y1>y2.
(方法三)特殊值法:设x1=2,x2=1,x3=-1,则y1=-,y2=-1,y3=1,所以y3>y1>y2.故选A.
方法总结:此题的三种解法中,图象法直观明了,具有一般性;特殊值法最简单,这种方法对于解答选择题很有效,要注意学会使用.
探究点二:反比例函数与一次函数的综合
【类型一】 反比例函数与一次函数图象的综合
在同一直角坐标系中,函数y=kx-k与y=(k≠0)的图象大致是( )
解析:在同一直角坐标系中,函数y=kx-k与y=(k≠0)的图象只有两种情况,当k>0时,y=分布在第一、三象限,此时y=kx-k经过第一、三、四象限;当k<0时,y=分布在第二、四象限,此时y=kx-k经过第一、二、四象限.故选D.
方法总结:判断函数图象分布是否正确,主要通过假设条件,根据函数的图象及性质判断,若与选项一致则正确;若相矛盾,则错误.
【类型二】 反比例函数与一次函数图象与性质的综合
如图所示,一次函数y=ax+b的图象与反比例函数y=的图象交于M、N两点.
(1)求反比例函数与一次函数的表达式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.
解析:(1)把点N(-1,-4)代入y=即可求出反比例函数解析式,进而求出点M,再把M、N代入一次函数即可求出一次函数的解析式;
(2)由图象可知当反比例函数的值大于一次函数的值时x的取值范围是x<-1或0解:(1)由反比例函数定义可知k=(-1)×(-4)=4.
∴y=,而M(2,m)在反比例函数图象上.
∴m==2,∴M(2,2).
将M、N两点坐标代入一次函数解析式得解得
∴y=2x-2;
(2)由图中观察可知,x的取值范围为x<-1或0方法总结:分别利用反比例函数和一次函数的定义求出其解析式,根据图象形态和性质判断,在解题过程中要考虑全面,不要漏解.
探究点三:反比例函数y=(k≠0)中k的几何意义
如图所示,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为________.
解析:根据反比例函数y=(k≠0)系数k的几何意义得S△POA=×4=2,S△AOB=×2=1,∴S△POB=S△POA-S△AOB=2-1=1.
方法总结:本题考查了反比例函数y=(k≠0)系数k的几何意义,从反比例函数y=(k≠0)图象上任取一点P向x轴(或y轴)作垂线,垂线与坐标轴交点、点P与原点的连线段围成的直角三角形的面积都是.
三、板书设计
反比例函数的图象和性质
通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合.通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.
21.5 反比例函数
第2课时 反比例函数的图象和性质
教学思路
(纠错栏)
教学思路
(纠错栏)
教学目标:
1.能描点画出反比例函数的图象.
2.通过反比例函数的图象的分析,探索并掌握反比例函数图象的性质.
教学重点:反比例函数的图象及性质
预设难点:当x>0或<0时反比例函数的性质
☆ 预习导航 ☆
一、链接:
什么是反比例函数?写出它的一般形式.
二、导读
画出函数的图象.
问题:画函数图象的步骤是什么?如何取值呢?取值时需要注意哪些问题?
☆ 合作探究 ☆
1.列表
x
…
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
…
…
…
2.描点、连线
观察图象,说说反比例函数的图象有哪些特征?
在上面的平面直角坐标系中画出的图象,观察它有哪些特征?并与的图象作比较。
归纳:反比例函数y=(k≠0)的图象和性质
(1)当k>0时,图象的两个分支分别在第_______象限,在每个象限内,图象自左向右下降, 函数y随着 x的增大而 ;
(2)当k<0 时,图象的两个分支分别在第 象限,在每个象限内,图象自左向右上升,函数y 随着 x的增大而 .
4. 反比例函数的图象在二、四象限,求m的取值范围。
☆ 归纳反思 ☆
1.反比例函数的图象和性质。
2.比较反比例函数与正比例函数的性质有何异同?
☆ 达标检测 ☆
1.对于函数,当x<0时,y随x的 而增大,这部分图象在第 象限。
2.函数y=-kx+k与y=-(k≠0)在同一坐标系中的图象可能是:( )
3.已知函数(>0)的图象上有点A()、B()、C(),
且<<0<,试比较、、的大小.
第3课时 反比例函数的应用
1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)
2.能利用反比例函数解决实际问题.(难点)
一、情境导入
我们都知道,气球内可以充满一定质量的气体.
如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?
二、合作探究
探究点一:生活中的反比例函数
做拉面的过程中,渗透着反比例函数的知识.将一定体积的面团做成拉面,苗条的总长度y(m)是面条粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.
(1)写出y与S之间的函数表达式;
(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?
(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?
解:(1)由题意可设y与S之间的函数关系式为y=.∵点P(4,32)在图象上,
∴32=,∴k=128.
∴y与S之间的函数表达式为y=(S>0);
(2)把S=1.6mm2代入y=中,得y==80.
∴当面条的横截面积为1.6mm2时,面条的总长度是80m;
(3)把S=1.28mm2代入y=中,得y=100.
由图象可知,要使面条的横截面积不多于1.28mm2,面条的总长度至少应为100m.
方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.
探究点二:物理学科中的反比例函数
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速地通过这片湿地,他们沿着前进路线铺了若干木板,构筑成一条临时通道.木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
(1)请直接写出这一函数表达式和自变量的取值范围;
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板的面积至少要多大?
解:(1)设木板对地面的压强p(Pa)与木板面积S(m2)的反比例函数关系式为p=(S>0).
因为反比例函数的图象经过点A(1.5,400),所以k=600.
所以反比例函数的关系式为p=(S>0);
(2)当S=0.2时,p==3000,即压强是3000Pa;
(3)由题意知≤6000,所以S≥0.1,即木板面积至少要有0.1m2.
方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p=,当压力一定时,p与S成反比例.另外利用反比例函数的知识解决实际问题,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.
三、板书设计
经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
21.5 反比例函数
第3课时 反比例函数的应用
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、教学过程:
寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?
四、例习题分析
例1.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米
五、随堂练习
1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为
2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式
3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度
答案:=,当V=2时,=7.15
六、课后练习
1.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)
(1)则速度v与时间t之间有怎样的函数关系?
(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?
(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?
答案:,v=240,t=12
2.学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天
(1)则y与x之间有怎样的函数关系?
(2)画函数图象
(3)若每天节约0.1吨,则这批煤能维持多少天?
七、教学反思 :