首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
沪科版(2024)
九年级上册
第21章 二次函数与反比例函数
21.2 二次函数的图象和性质
沪科版九年级数学上册21.2二次函数y=ax2+bx+c的图象和性质教案(8份打包)
文档属性
名称
沪科版九年级数学上册21.2二次函数y=ax2+bx+c的图象和性质教案(8份打包)
格式
zip
文件大小
2.5MB
资源类型
教案
版本资源
沪科版
科目
数学
更新时间
2019-05-18 09:12:56
点击下载
文档简介
2.二次函数y=ax2+bx+c的图象和性质
第1课时 二次函数y=ax2+k的图象和性质
1.会用描点法画出y=ax2+k的图象;
2.掌握形如y=ax2+k的二次函数图象的性质,并会应用;(重点)
3.理解二次函数y=ax2与y=ax2+k之间的联系.(难点)
一、情境导入
边长为15cm的正方形铁片,中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)的函数关系式是什么?它的顶点坐标是什么?
二、合作探究
探究点一:二次函数y=ax2+k的图象与性质
【类型一】 确定y=ax2+k的图象与坐标轴的交点
抛物线y=x2-4与x轴的交点坐标是________.
解析:因为抛物线y=x2-4与x轴的交点纵坐标是0,即y=0,此时x2-4=0,解得x=±2,所以抛物线y=x2-4与x轴的交点坐标是(2,0)与(-2,0).
方法总结:求抛物线与x轴交点坐标时,可利用交点纵坐标为0构造关于x的方程来求抛物线的横坐标.
【类型二】 二次函数y=ax2+k增减性判断
已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正确的是( )
A.若y1=y2,则x1=x2
B.若x1=-x2,则y1=-y2
C.若0<x1<x2,则y1>y2
D.若x1<x2<0,则y1>y2
解析:如图所示,选项A:若y1=y2,则x1=-x2,所以选项A是错误的;选项B:若x1=-x2,则y1=y2,所以选项B是错误的;选项C:若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2,所以选项C是错误的;选项D:若x1<x2<0,则在对称轴的左侧,y随x的增大而减小,则y1>y2,所以选项D是正确的.故选D.
【类型三】 二次函数y=ax2+k的图象与性质的综合
若二次函数y=ax2+2的图象经过点(-2,10),则下列说法错误的是( )
A.a=2
B.当x<0,y随x的增大而减小
C.顶点坐标为(2,0)
D.图象有最低点
解析:把x=-2,y=10代入y=ax2+2可得10=4a+2,所以a=2,抛物线开口向上,有最低点,当x<0,y随x的增大而减小,所以A、B、D均正确,顶点坐标为(0,2),而不是(2,0).故选C.
方法总结:抛物线y=ax2+k(a≠0)的顶点为(0,k).
【类型四】 在同一坐标系中确定y=ax2+k的图象与一次函数的图象
在同一直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为( )
解析:当a>0时,抛物线开口向上,且直线从左向右逐渐上升;当a<0时,抛物线开口向下,且直线从左向右逐渐下降,由此排除选项A,C,D,故选B.
探究点二:二次函数y=ax2+k的平移
【类型一】 利用平移确定y=ax2+k的解析式
已知抛物线y=ax2+c向下平移2个单位后,所得抛物线为y=-3x2+2.那么抛物线的解析式为____________.
解析:因为抛物线y=ax2+c向下平移2个单位后,所得抛物线为y=-3x2+2.所以a=-3,c-2=2,所以c=4,所以抛物线的解析式为y=-3x2+4.
【类型二】 确定y=ax2与y=ax2+k的关系
抛物线y=ax2+c与y=-5x2的形状大小,开口方向都相同,且顶点坐标是(0,3),求抛物线的表达式,它是由抛物线y=-5x2怎样得到的?
解:抛物线y=ax2+c与y=-5x2的形状大小相同,开口方向也相同,∴a=-5.
又∵其顶点坐标为(0,3),
∴c=3.
∴y=-5x2+3.它是由抛物线y=-5x2向上平移3个单位得到的.
方法总结:对于二次函数y=ax2的图象来说,向上平移|c|个单位,就在ax2后面加|c|,向下平移|c|个单位,就在ax2后面减|c|.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数的图象与性质,体会数学建模的数形结合思想方法.
2.二次函数y=ax2+bx+c的图象和性质
第1课时 二次函数y=ax2+k的图象和性质
教学目标:
1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
重点难点:
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。
教学过程:
一、提出问题
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=2x2和函数y=2x2的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
解:(1)列表:
x
…
-3
-2
-1
0
1
2
3
…
y=x2
…
18
8
2
0
2
8
18
…
y=x2+1
…
19
9
3
l
3
9
19
…
(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
问题4:函数y=2x2+1和y=2x2的图象有什么联系?
由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。
问题5:现在你能回答前面提出的第2个问题了吗?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
完成填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.
以上就是函数y=2x2+1的性质。
三、做一做
问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
教学要点
让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。
问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?
教学要点
1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);
2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=-2。
问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系?
要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。
问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗?
[函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]
问题11:这个函数图象有哪些性质?
让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。
四、练习: 练习1、2、3。
五、小结
1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
2.你能说出函数y=ax2+k具有哪些性质?
六、作业:1.习题1.(1)
教后反思:
第2课时 二次函数y=a(x+h)2的图象和性质
1.会用描点法画出y=a(x+h)2的图象;
2.掌握形如y=a(x+h)2的二次函数图象的性质,并会应用;(重点)
3.理解二次函数y=a(x+h)2与y=ax2之间的联系.(难点)
一、情境导入
涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?
二、合作探究
探究点一:二次函数y=a(x+h)2的图象与性质
【类型一】 y=a(x+h)2的顶点坐标
已知抛物线y=a(x+h)2(a≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a,h的值.
解:∵抛物线y=a(x+h)2(a≠0)的顶点坐标为(-2,0),∴h=2.又∵抛物线y=a(x+2)2经过点(-4,2),∴a(-4+2)2=2.∴a=.
方法总结:二次函数y=a(x+h)2的顶点坐标为(-h,0).
【类型二】 二次函数y=a(x+h)2图象的形状
顶点为(-2,0),开口方向、形状与函数y=-x2的图象相同的抛物线的解析式为( )
A.y=(x-2)2 B.y=(x+2)2
C.y=-(x+2)2 D.y=-(x-2)2
解析:因为抛物线的顶点在x轴上,所以可设该抛物线的解析式为y=a(x+h)2(a≠0),而二次函数y=a(x+h)2(a≠0)与y=-x2的图象相同,所以a=-.而抛物线的顶点为(-2,0),所以h=2.把a=-,h=2代入y=a(x+h)2得y=-(x+2)2.故选C.
方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.
【类型三】 二次函数y=a(x+h)2的增减性及最值
对于二次函数y=9(x-1)2,下列结论正确的是( )
A.y随x的增大而增大
B.当x>0时,y随x的增大而增大
C.当x=-1时,y有最小值0
D.当x>1时,y随x的增大而增大
解析:因为a=9>0,所以抛物线开口向上,且h=-1,顶点坐标为(1,0),所以当x>1时,y随x的增大而增大.故选D.
探究点二:二次函数y=a(x+h)2图象的平移
【类型一】 利用平移确定y=a(x+h)2的解析式
抛物线y=ax2向右平移3个单位后经过点(-1,4),求a的值和平移后的函数关系式.
解析:y=ax2向右平移3个单位后的关系式可表示为y=a(x-3)2,把点(-1,4)的坐标代入即可求得a的值.
解:二次函数y=ax2的图象向右平移3个单位后的二次函数关系式可表示为y=a(x-3)2,把x=-1,y=4代入,得4=a(-1-3)2,a=,∴平移后二次函数关系式为y=(x-3)2.
方法总结:根据抛物线平移的规律,向右平移3个单位后,a不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.
【类型二】 确定y=a(x+h)2与y=ax2的关系
向左或向右平移函数y=-x2的图象,能使得到的新的图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.
解:能,理由如下:
设平移后的函数为y=-(x+h)2,
将x=-9,y=-8代入得-8=-(-9+h)2,
所以h=5或h=13,
所以平移后的函数为y=-(x+5)2或y=-(x+13)2.
即抛物线的顶点为(-5,0)或(-13,0),所以应向左平移5或13个单位.
【类型三】 二次函数y=a(x+h)2图象的平移与几何图形的综合
把函数y=x2的图象向右平移4个单位后,其顶点为C,并与直线y=x分别相交于A、B两点(点A在点B的左边),求△ABC的面积.
解析:利用二次函数平移规律先确定平移后的抛物线解析式,确定C点坐标,再解由所得到的二次函数解析式与y=x组成的方程组,确定A、B两点坐标,最后求△ABC的面积.
解:平移后的函数为y=(x-4)2,顶点C的坐标为(4,0),
解方程组得或
∵点A在点B的左边,∴A(2,2),B(8,8),∴S△ABC=S△OBC-S△OAC=OC×8-OC×2=12.
方法总结:两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x+h)2的图象与性质,体会数学建模的数形结合思想方法.
2.二次函数y=ax2+bx+c的图象和性质
第2课时 二次函数y=a(x+h)2的图象和性质
教学目标:
1.使学生能利用描点法画出二次函数y=a(x+h)2的图象。
2.让学生经历二次函数y=a(x+h)2性质探究的过程,理解函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的关系。
重点难点:
重点:会用描点法画出二次函数y=a(x+h)2的图象,理解二次函数y=a(x+h)2的性质,理解二次函数y=a(+h)2的图象与二次函数y=ax2的图象的关系是教学的重点。
难点:理解二次函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的相互关系是教学的难点。
教学过程:
一、提出问题
1.在同一直角坐标系内,画出二次函数y=-x2,y=-x2-1的图象,并回答:
(1)两条抛物线的位置关系、对称轴、开口方向和顶点坐标。
(2)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?
二、分析问题,解决问题
问题1:你将用什么方法来研究上面提出的问题?
(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)
问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?
2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。
问题3:现在你能回答前面提出的问题吗?
2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。
问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?
三、做一做
问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?
教学要点
1.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。
问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?
教学要点
让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。
问题7:在同一直角坐标系中,函数y=-(x+2)2图象与函数y=-x2的图象有何关系?
(函数y=-(x+2)2的图象可以看作是将函数y=-x2的图象向左平移2个单位得到的。)
问题8:你能说出函数y=-(x+2)2图象的开口方向、对称轴和顶点坐标吗?
(函数y=-(x十2)2的图象开口向下,对称轴是直线x=-2,顶点坐标是(-2,0))。
问题9:你能得到函数y=(x+2)2的性质吗?
教学要点:让学生讨论、交流,发表意见,归结为:当x<-2时,函数值y随x的增大而增大;
当x>-2时,函数值y随工的增大而减小;当x=-2时,函数取得最大值,最大值y=0。
四、课堂练习: 练习1、2、3。
五、小结:
1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象有什么联系和区别? 2.你能说出函数y=a(x-h)2图象的性质吗?
六、作业 1.习题 1(2)。
第3课时 二次函数y=a(x+h)2+k的图象和性质
1.会用描点法画出y=a(x+h)2+k的图象;
2.掌握形如y=a(x+h)2+k的二次函数图象的性质,并会应用;(重点)
3.理解二次函数y=a(x+h)2+k与y=ax2之间的联系.(难点)
一、情境导入
前面我们是如何研究二次函数y=ax2、y=ax2+k、y=a(x+h)2的图象与性质的?如何画出y=(x-2)2+1的图象?
二、合作探究
探究点一:二次函数y=a(x+h)2+k的图象与性质
【类型一】 抛物线y=a(x+h)2+k的开口方向、对称轴、顶点坐标及增减性
对于抛物线y=3(x-3)2+6,下列结论:①抛物线的开口向上;②对称轴为直线x=3;③顶点坐标为(3,6);④x>0时,y随x的增大而增大.其中正确结论的个数为( )
A.1 B.2 C.3 D.4
解析:根据二次函数的性质对各小题分析判断即可.①∵a=3>0,∴抛物线的开口向上,正确;②对称轴为直线x=3,正确;③顶点坐标为(3,6),正确;④∵x>3时,y随x的增大而增大,即x>0时,图象的增减性不同.故选C.
方法总结:对于抛物线y=a(x+h)2+k,其对称轴为x=-h,顶点坐标为(-h,k).当a>0时,对称轴左边的图象,y随x的增大而减小,对称轴右边的图象,y随x的增大而增大,当a<0时,反之.
【类型二】 利用顶点确定y=a(x+h)2+k的解析式
已知抛物线y=ax2+bx+c的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为__________________.
解析:由题意可设抛物线的表达式为y=a(x+2)2+3,把x=-1,y=5代入得5=a(-1+2)2+3,所以a=2,所以抛物线的表达式为y=2(x+2)2+3.
【类型三】 利用y=a(x+h)2+k的图象解决问题
如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )
A.-3 B.1 C.5 D.8
解析:C、D两点是抛物线与x轴的交点,当C的横坐标取得最小值时,抛物线的顶点在A处,把C(-3,0),A(1,4)代入解析式,可得0=a(-3-1)2+4,求得a=-,当抛物线的顶点在B处时,D的横坐标取得最大值,其解析式y=-(x-4)2+4,易得最大值为8.故选D.
探究点二:二次函数y=a(x+h)2+k的图象的平移
将抛物线y=x2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )
A.y=(x-2)2-1
B.y=(x-2)2+1
C.y=(x+2)2+1
D.y=(x+2)2-1
解析:由“上加下减”的平移规律可知,将抛物线y=x2向下平移1个单位所得抛物线的解析式为y=x2-1;由“左加右减”的平移规律可知,将抛物线y=x2-1向右平移2个单位所得抛物线的解析式为y=(x-2)2-1.故选A.
探究点三:二次函数y=a(x+h)2+k的图象与几何图形的综合
如图所示,在平面直角坐标系xOy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k.所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求h,k的值;
(2)判断△ACD的形状,并说明理由.
解析:(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式;
(2)分别过点D作x轴和y轴的垂线段DE,DF,再利用勾股定理,可说明△ACD是直角三角形.
解:(1)∵将抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x+1)2-4,∴h=-1,k=-4;
(2)△ACD为直角三角形.理由如下:由(1)得y=(x+1)2-4.当y=0时,(x+1)2-4=0,x=-3或x=1.∴A(-3,0),B(1,0).当x=0时,y=(x+1)2-4=(0+1)2-4=-3,∴C点坐标为(0,-3).顶点坐标为D(-1,-4).作出抛物线的对称轴x=-1交x轴于点E,作DF⊥y轴于点F,如图所示.在Rt△AED中,AD2=22+42=20;在Rt△AOC中,AC2=32+32=18;在Rt△CFD中,CD2=12+12=2.∵AC2+CD2=AD2,∴△ACD是直角三角形.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x+h)2+k的图象与性质,体会数学建模的数形结合思想方法.
2.二次函数y=ax2+bx+c的图象和性质
第3课时 二次函数y=a(x+h)2+k的图象和性质
教学目标:
1.使学生理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系。
2.会确定函数y=a(x+h)2+k的图象的开口方向、对称轴和顶点坐标。
3.让学生经历函数+h)2+k性质的探索过程,理解函数y=a(x+h)2+k的性质。
重点难点:
重点:确定函数y=a(x+h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x+h)2+k的性质是教学的重点。
难点:正确理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x+h)2+k的性质是教学的难点。
教学过程:
一、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)
2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?
二、试一试
你能填写下表吗?
y=2x2 向右平移
的图象 1个单位
y=2(x-1)2
向上平移
1个单位
y=2(x-1)2+1的图象
开口方向
向上
对称轴
y轴
顶 点
(0,0)
问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?
问题3:你能发现函数y=2(x-1)2+1有哪些性质?
对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。
三、做一做
问题4:在图3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?
问题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
(函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
四、课堂练习: 练习1、2、3、4。
练习第4题提示:将-3x2-6x+8配方,即
y=-3x2-6x+8 =-3(x2+2x)+8 =-3(x+1)2+11
五、小结
1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?
六、作业:
1.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。
(1)在同一直角坐标系中画出三个函数的图象;
(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;
(3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;
(4)试讨沦函数y=6(x+3)2-3的性质;
3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。
4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?
教后反思:
第4课时 二次函数y=ax2+bx+c的图象和性质
1.会画二次函数一般式y=ax2+bx+c的图象;
2.配方法求二次函数一般式y=ax2+bx+c的顶点坐标与对称轴,并掌握二次函数的性质;(重点)
3.二次函数性质的综合应用.(难点)
一、情境导入
火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用h=-5t2+150t+10表示.经过多长时间火箭达到它的最高点?
二、合作探究
探究点一:二次函数y=ax2+bx+c的图象和性质
【类型一】 二次函数y=ax2+bx+c的最值
已知0≤x≤,那么函数y=-2x2+8x-6的最大值是( )
A.-10.5 B.2
C.-2.5 D.-6
解析:y=-2x2+8x-6=-2(x-2)2+2,∵自变量取值范围为0≤x≤,∴图象都在对称轴的左侧,且y随x的增大而增大.∴当x=时,y有最大值,最大值为y=-2x2+8x-6=-2×()2+8×-6=-2.5.故选C.
方法总结:二次函数求最值最常用的方法是配方法和公式法,需要注意的是,当自变量限制范围时,如果对称轴取值不在范围内,则可以根据二次函数图象的增减性在取值范围内求最值.
【类型二】 二次函数y=ax2+bx+c的增减性
如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增大而增大,则实数a的取值范围是( )
A.a>1 B.-1<a≤1
C.a>0 D.-1<a<2
解析:抛物线的对称轴为x=-=1,∵抛物线开口向下,在对称轴左侧,y随x的增大而增大,∴a≤1.∵-1<x<a,∴a>-1,∴-1
方法总结:抛物线的增减性:当a>0时,开口向上,对称轴左降右升;当a<0时,开口向下,对称轴左升右降.
【类型三】 在同一坐标系中确定二次函数与一次函数的图象
在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠0)的图象可能是( )
解析:当二次函数图象开口向上时,-m>0,即m<0,对称轴x==<0,这时抛物线的对称轴在y轴左侧.当m<0时,一次函数y=mx+m的图象经过第二、三、四象限.故选D.
方法总结:多种函数图象的识别,一般可以先确定其中一种函数的图象,再根据函数图象得到该函数解析式中字母的特点,最后结合二次函数图象的开口方向、对称轴或图象经过的特殊点对选项进行逐一考察,得出结论.
探究点二:二次函数y=ax2+bx+c图象的平移
在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位,得到图象的顶点坐标是( )
A.(-3,-6) B.(1,-4)
C.(1,-6) D.(-3,4)
解析:二次函数y=2x2+4x-3配方得y=2(x+1)2-5,将y=2(x+1)2-5向右平移2个单位所得抛物线的解析式为y=2(x+1-2)2-5=2(x-1)2-5,将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为y=2(x-1)2-5-1=2(x-1)2-6,此时二次函数图象的顶点为(1,-6).故选C.
方法总结:二次函数的平移规律:将抛物线y=ax2(a≠0)向上平移k(k>0)个单位所得的函数关系式为y=ax2+k,向下平移k(k>0)个单位所得函数关系式为y=ax2-k;向左平移h(h>0)个单位所得函数关系式为y=a(x+h)2;向右平移h(h>0)个单位所得函数关系式为y=a(x-h)2;这一规律可简记为“上加下减,左加右减”.
探究点三:二次函数y=ax2+bx+c的位置与系数a、b、c的关系
如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(,y2)是抛物线上两点,则y1>y2.其中正确的是( )
A.①②③ B.①③④
C.①②④ D.②③④
解析:∵-=-1,∴b=2a,即b-2a=0,∴①正确;∵当x=-2时点在x轴的上方,即4a-2b+c>0,∴②不正确;∵4a+2b+c=0,∴c=-4a-2b,∵b=2a,∴a-b+c=a-b-4a-2b=-3a-3b=-9a,∴③正确;∵(,y2)关于对称轴x=-1的对称点为(-,y2),x<-1时,y随x的增大而增大,∵-3>-,∴y1>y2,∴④正确.综上所述,选B.
方法总结:抛物线在直角坐标系中的位置,由a、b、c的符号确定:抛物线开口方向决定了a的符号,当开口向上时,a>0,当开口向下时,a<0;抛物线的对称轴是x=-;当x=2时,二次函数的函数值为y=4a+2b+c;函数的图象在x轴上方时,y>0,函数的图象在x轴下方时,y<0.
探究点四:二次函数图象与几何图形的综合应用
如图,已知二次函数y=-x2+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.
解:(1)把A(2,0)、B(0,-6)代入y=-x2+bx+c得解得
∴这个二次函数的解析式为y=-x2+4x-6;
(2)∵该抛物线对称轴为直线x=-=4,
∴点C的坐标为(4,0),
∴AC=OC-OA=4-2=2,
∴S△ABC=×AC×OB=×2×6=6.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+bx+c的图象与性质,体会数学建模的数形结合思想方法.
2.二次函数y=ax2+bx+c的图象和性质
第4课时 二次函数y=ax2+bx+c的图象和性质
教学目标:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
重点难点:
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。
教学过程:
一、提出问题
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
3.函数y=-4(x-2)2+1具有哪些性质?
(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)
4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗?
5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?
二、解决问题
由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。
解:(1)列表:在x的取值范围内列出函数对应值表;
x
…
-2
-1
0
1
2
3
4
…
y
…
-6
-4
-2
-2
-2
-4
-6
…
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象。
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。
让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2
三、做一做
1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?
教学要点
(1)在学生画函数图象的同时,教师巡视、指导;
(2)叫一位或两位同学板演,学生自纠,教师点评。
2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?
教学要点
(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?
以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;
y=ax2+bx+c=a(x2+x)+c =a[x2+x+()2-()2]+c =a[x2+x+()2]+c-
=a(x+)2+
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-,)
四、课堂练习:
练习第1、2、3题。
五、小结: 通过本节课的学习,你学到了什么知识?有何体会?
六、作业:
1.填空:
(1)抛物线y=x2-2x+2的顶点坐标是_______;
(2)抛物线y=2x2-2x-的开口_______,对称轴是_______;
(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;
(4)抛物线y=-x2+2x+4的对称轴是_______;
(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.
2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。
3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=3x2+2x; (2)y=-x2-2x
(3)y=-2x2+8x-8 (4)y=x2-4x+3
4.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质
教后反思:
点击下载
同课章节目录
第21章 二次函数与反比例函数
21.1 二次函数
21.2 二次函数的图象和性质
21.3 二次函数与一元二次方程
21.4 二次函数的应用
21.5 反比例函数
第22章 相似形
22.1 比例线段
22.2 相似三角形的判定
22.3 相似三角形的性质
22.4 图形的位似变换
第23章 解直角三角形
23.1 锐角的三角函数
23.2解直角三角形及其应用