2020届人教A版(文科数学) 排列组合——选择合适的数学模型 单元测试

文档属性

名称 2020届人教A版(文科数学) 排列组合——选择合适的数学模型 单元测试
格式 zip
文件大小 132.2KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-05-17 09:35:04

图片预览

文档简介

2020届人教A版(文科数学) 排列组合——选择合适的数学模型 单元测试
1、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则在该实验中程序顺序的编排方法共有( )
A.144种 B.96种 C.48种 D.34种
2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( )
A. 232 B. 252 C.472 D. 484
3、在1,2,3,4,5这五个数字所组成的允许有重复数字的三位数中,其各个数字之和为9的三位数共有( )
A. 16个 B. 18个 C.19个 D.21个
4、把座位号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,且分给同一人的多张票必须连号,那么不同的分法种数为( )
A.96 B.240 C.48 D.40
5、某班组织文艺晚会,准备从等8个节目中选出4个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的和数为( )
A.1860 B.1320 C.1140 D.1020
6、某班一天中有节课,上午节课,下午节课,要排出此班一天中语文、数学、英语、物理、体育、艺术堂课的课程表,要求数学课排在上午,艺术课排在下午,不同排法种数为( )
A. B. C. D.
7、用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是( )
A.48 B.36 C.28 D.12
8、某宾馆安排A、B、C、D、E五人入住3个房间,每个房间至少住1人,且A、B不能住同一房间,则不同的安排方法有( )种
A.24 B .48 C.96 D.114
9、(2014重庆八中一月考,2)要从名男生和名女生中选出人组成啦啦队,若按性别分层抽样且甲男生担任队长,则不同的抽样方法数是
A. B. C. D.
10、(2015,广东文),若集合:
,,用表示集合中的元素个数,则( )
A. B. C. D.
11、(浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种
12、(安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )
A.24对 B.30对 C.48对 D.60对
13、(重庆)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是(  )
A.72 B.120 C.144 D.168
14、(广东)设集合,那么集合中满足条件“”的元素个数为( )
A. B. C. D.
15、(2018,哈尔滨六中上学期期末考试)高一学习雷锋志愿小组共有人,其中一班、二班、三班、四班各人,现在从中任选人,要求这三人不能是同一个班级的学生,且在三班至多选人,不同的选取法的种数为 ( )
A. B. C. D.
16、集合的4元子集中,任意两个元素差的绝对值都不为1,这样的4元子集的个数有_____个
习题答案:
1、答案:B
解析:相邻则考虑使用整体法,程序有要求所以先确定的位置,共有2种选法,然后排剩下的元素,再排间的顺序,所以总数为
2、答案:C
解析:考虑使用间接法,16张卡片任取3张共有种,然后三张卡片同色则不符合要求,共有种,然后若红色卡片有2张则不符合要求,共有种,所以不同的取法种数为:
3、答案:A
解析:可按重复数字个数进行分类讨论,若没有重复数字,则数字只能是或,三位数共有个;若有两个重复数字,则数字为和,三位数有个;若三个数字相同,则只有333,所以
4、答案:A
解析:5张票分给4个人,则必有一人拿两张票,所以先确定哪个人有两张票,共种选择,然后确定给哪两张连号的票,共4种情况,剩下的票分给3人即可。所以
5、答案:C
解析:由题可知可分为两类:第一类只有一个选中,则还需从剩下6个里选出3个节目,然后全排列,所以不同的演出顺序有;第二类,同时选中,则还需从剩下6个里选出2个,然后不相邻则进行插空,所以不同演出顺序有。综上
6、答案:B
解析:先排数学与艺术各有3种共9种,其余的4个科目全排列有种,所以
7、答案:C
解析:根据题意,在0,1,2,3,4中有3个偶数,2个奇数,可以分3种情况讨论:
(1)0被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况;故0被奇数夹在中间时,有种情况;
(2)2被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、2、3看成一个整体,与0、4全排列,有种情况,其中0在首位的有2种情况,则有种排法;故2被奇数夹在中间时,有种情况;
(3)4被奇数夹在中间时,同2被奇数夹在中间的情况,有8种情况,
则这样的五位数共有12+8+8=28种.
8、答案:D
解析:由题可知,5个人住三个房间,每个房间至少住一人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有种,A、B住同一房间有种,故有种,当为(2,2,1)时,有种,A、B住同一房间有种,故有种,根据分类计数原理共有种
9、答案:A
解析:由分层抽样可得男生需要4名,女生需要2名,甲男生担任队长,则还需要出3名男生,所以
10、答案:D
解析:分别统计中元素的个数,在中,可取的值由的值决定,当时分别可选,所以有种,当时;同理有种;当时;同理有种;当时;同理有种,所以共计;在中,可知一组,一组,按照的计算方式可得和的选择各有10种,所以。从而
11、答案:60
解析:可按获奖人数进行分类讨论,若有3人,则一人获得一张中奖的奖券,即,若2人,则1人获1个奖,1人获2个奖,,所以共计
12、答案:C
解析:正方体的对角线共有12条,其所成角大致分为,可使用间接法,2个一对共有种选法,其中成的有6对,成有12对,所以成的共有对
13、答案:B
解析:不相邻则“插空”,可歌舞类节目搭架子,因为歌舞类节目也不能相邻,所以另外3个节目插空时有两种情况,一种情况为3个节目插3个空,则有2种插法,再安排完顺序,合计:;另一种情况为相声与一个小品相邻,然后与另一个小品插两个空,则,则共计种
14、答案:D
解析:可知在中,的情况至少1个,最多3个,从而分三种情况讨论即可,每种讨论都分为两步,第一步确定几个选0,几个选;第二步确定选的是选1还是:
15、答案:B
解析:分两种情况讨论,当三班没人时,,当三班恰有一人时,,所以
16、答案:
解析:两个元素差绝对值不为一,说明中的四个元素两两不相邻,所以考虑插空法,剩下16个位置共17个空,选择四个孔即可,共有个