2018-2019学年人教A版必修一   函数的应用 单元测试

文档属性

名称 2018-2019学年人教A版必修一   函数的应用 单元测试
格式 zip
文件大小 154.5KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-05-19 18:30:38

图片预览

文档简介


2018-2019学年人教A版必修一   函数的应用 单元测试
1.下列函数中,在(-1,1)内有零点且单调递增的是(  )
A.y=logx       B.y=2x-1
C.y=x2- D.y=-x3
2.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:
x
1
2
3
4
5
6
y
124.4
33
-74
24.5
-36.7
-123.6
则函数y=f(x)在区间[1,6]上的零点至少有(  )
A.2个 B.3个
C.4个 D.5个
解析:选B 依题意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据零点存在性定理可知,f(x)在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个.
3.函数f(x)=2x+2x的零点所处的区间是(  )
A.[-2,-1] B.[-1,0]
C.[0,1] D.[1,2]
解析:选B f(-2)=2-2+2×(-2)<0,f(-1)=2-1+2×(-1)<0,f(0)=20+0>0,由零点存在性定理知,函数f(x)的零点在区间[-1,0]上.故选B.
4.已知函数f(x)=ln x-ax2+ax恰有两个零点,则实数a的取值范围为(  )
A.(-∞,0) B.(0,+∞)
C.(0,1)∪(1,+∞) D.(-∞,0)∪{1}
解析:选C 由题意,显然x=1是函数f(x)的一个零点,取a=-1,则f(x)=ln x+x2-x,f′(x)==>0恒成立.则f(x)仅有一个零点,不符合题意,排除A、D;取a=1,则f(x)=ln x-x2+x,f′(x)==,令f′(x)=0,得x=1,则f(x)在(0,1)上递增,在(1,+∞)上递减,f(x)max=f(1)=0,即f(x)仅有一个零点,不符合题意,排除B,故选C.
5.已知a,b,c,d都是常数,a>b,c>d.若f(x)=2 018-(x-a)(x-b)的零点为c,d,则下列不等式正确的是(  )
A.a>c>b>d B.a>b>c>d
C.c>d>a>b D.c>a>b>d
6.下列函数图像与x轴均有公共点,其中能用二分法求零点的是(  )
解析 能用二分法求零点的函数必须在含零点的区间(a,b)内连续,并且有f(a)·f(b)<0.A、B、D中函数不符合.
答案C
7.函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是 (  ).
A.(1,3) B.(1,2)
C.(0,3) D.(0,2)
解析 由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0答案 C
8.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为(  ).
A.6 B.7 C.8 D.9
解析 当0≤x<2时,令f(x)=x3-x=0,得x=0或x=1.
根据周期函数的性质,由f(x)的最小正周期为2,可知y=f(x)在[0,6)上有6个零点,
又f(6)=f(3×2)=f(0)=0,
∴f(x)在[0,6]上与x轴的交点个数为7.
答案 B
9.函数f(x)=-cosx在[0,+∞)内 (  ).
A.没有零点 B.有且仅有一个零点
C.有且仅有两个零点 D.有无穷多个零点
答案 B
10.已知函数f(x)=xex-ax-1,则关于f(x)零点叙述正确的是(  ).
A.当a=0时,函数f(x)有两个零点
B.函数f(x)必有一个零点是正数
C.当a<0时,函数f(x)有两个零点
D.当a>0时,函数f(x)只有一个零点
解析 f(x)=0?ex=a+
在同一坐标系中作出y=ex与y=的图象,
可观察出A、C、D选项错误,选项B正确.
答案 B
11.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0可得其中一个零点x0∈______,第二次应计算________.
解析∵f(x)=x3+3x-1是R上的连续函数,且f(0)<0,f(0.5)>0,则f(x)在x∈(0,0.5)上存在零点,且第二次验证时需验证f(0.25)的符号.
答案(0,0.5) f(0.25)
12.函数f(x)=则函数y=f[f(x)]+1的所有零点所构成的集合为________.
13.已知函数f(x)=ex-2x+a有零点,则a的取值范围是________.
解析 由原函数有零点,可将问题转化为方程ex-2x+a=0有解问题,即方程a=2x-ex有解.令函数g(x)=2x-ex,则g′(x)=2-ex,令g′(x)=0,得x=ln 2,所以g(x)在(-∞,ln 2)上是增函数,在(ln 2,+∞)上是减函数,所以g(x)的最大值为:g(ln 2)=2ln 2-2.因此,a的取值范围就是函数g(x)的值域,所以,a∈(-∞,2ln 2-2].
答案 (-∞,2ln 2-2]
14.若直角坐标平面内两点P,Q满足条件:①P、Q都在函数f(x)的图象上;②P、Q关于原点对称,则称点对(P、Q)是函数f(x)的一个“友好点对”(点对(P、Q)与点对(Q,P)看作同一个“友好点对”).已知函数f(x)=则f(x)的“友好点对”的个数是________.
解析 设P(x,y)、Q(-x,-y)(x>0)为函数f(x)的“友好点对”,则y=,-y=2(-x)2+4(-x)+1=2x2-4x+1,∴+2x2-4x+1=0,在同一坐标系中作函数y1=、y2=-2x2+4x-1的图象,y1、y2的图象有两个交点,所以f(x)有2个“友好点对”,故填2.
答案 2
15.设函数f(x)=(x>0).
(1)作出函数f(x)的图象;
(2)当0(3)若方程f(x)=m有两个不相等的正根,求m的取值范围.
解 (1)如图所示.

(3)由函数f(x)的图象可知,当016.已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.
解析 ∵f(x)=4x+m·2x+1有且仅有一个零点,
即方程(2x)2+m·2x+1=0仅有一个实根.
设2x=t(t>0),则t2+mt+1=0.
当Δ=0时,即m2-4=0,
∴m=-2时,t=1;m=2时,t=-1(不合题意,舍去),
∴2x=1,x=0符合题意.
当Δ>0时,即m>2或m<-2时,
t2+mt+1=0有两正或两负根,
即f(x)有两个零点或没有零点.
∴这种情况不符合题意.
综上可知:m=-2时,f(x)有唯一零点,该零点为x=0.
17.已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).
②当6∴f(10)-f(8)=12-t,解得t=8;
③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,
∴t=9.
综上可知,存在常数t=,8,9满足条件.
18.已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
解(1)法一:∵g(x)=x+≥2=2e,
等号成立的条件是x=e,
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有零点.
法二:作出g(x)=x+(x>0)的大致图象如图:
可知若使g(x)=m有零点,
则只需m≥2e.

(2)若g(x)-f(x)=0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+(x>0)的大致图象.
∵f(x)=-x2+2ex+m-1
=-(x-e)2+m-1+e2.
其图象的对称轴为x=e,开口向下,最大值为m-1+e2.
故当m-1+e2>2e,
即m>-e2+2e+1时,
g(x)与f(x)有两个交点,
即g(x)-f(x)=0有两个相异实根.
∴m的取值范围是(-e2+2e+1,+∞)
19.已知函数f(x)=x3-x2++.求证:存在x0∈,使f(x0)=x0.
证明:令g(x)=f(x)-x.
∵g(0)=,g=f-=-,
∴g(0)·g<0.
又∵函数g(x)在上是连续不断的曲线,
∴存在x0∈,使g(x0)=0,即f(x0)=x0.
20.已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.
(1)写出函数y=f(x)的解析式.
(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.

(2)方程f(x)=a恰有3个不同的解,
即y=f(x)与y=a的图象有3个不同的交点.
作出y=f(x)与y=a的图象如图所示,故若方程f(x)=a恰有3个不同的解,只需-1<a<1,
故a的取值范围为(-1,1).
21.已知二次函数f(x)=x2+(2a-1)x+1-2a,
(1)判断命题:“对于任意的a∈R,方程f(x)=1必有实数根”的真假,并写出判断过程;
(2)若y=f(x)在区间(-1,0)及内各有一个零点,求实数a的取值范围.
解:(1)“对于任意的a∈R,方程f(x)=1必有实数根”是真命题.依题意,f(x)=1有实根,即x2+(2a-1)x-2a=0有实根,因为Δ=(2a-1)2+8a=(2a+1)2≥0对于任意的a∈R恒成立,即x2+(2a-1)x-2a=0必有实根,从而f(x)=1必有实根.
(2)依题意,要使y=f(x)在区间(-1,0)及内各有一个零点,
只需即解得<a<.
故实数a的取值范围为.
22.已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=-4ln x的零点个数.
当x变化时,g′(x),g(x)的取值变化情况如下:
x
(0,1)
1
(1,3)
3
(3,+∞)
g′(x)

0

0

g(x)
?
极大值
?
极小值
?
当0又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点.
故g(x)在(0,+∞)上仅有1个零点.


同课章节目录