2.1 认识一元二次方程(课件17张PPT+教案)

文档属性

名称 2.1 认识一元二次方程(课件17张PPT+教案)
格式 zip
文件大小 510.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-05-20 08:10:28

文档简介

1.认识一元二次方程(一)
教学目标:
1.一元二次方程的概念
2.一元二次方程的有关概念.
3.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.
教学重点:
一元二次方程的有关概念.
教学难点:
培养学生的数学意识及解决简单的实际问题的能力.
教学过程:
本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。
第一环节:自主探究问题一
活动内容:
出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?
活动目的:
提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。
教学要求与效果:
教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的矩形地面、条形区域和地毯区域吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。
教学中教师可以一次完成下列任务:
(1)罗列学生提的问题;
(2)引导学生分析所提问题满足的条件,提出解答的方式;
(3)引导学生列出相应的方程并整理。
从实际效果来看,学生提出的问题多样有:(1)花边的宽,(2)中央长方形的长、宽等;学生列方程问题不大,所列方程也多样,依据的等量关系不同,得到的方程也不同;但是,整理方程时显得困难,这与课前没有复习整式的运算有直接的关系。
第二环节:自主探究问题二
活动内容:
在学生的疑问处提出问题:你能找到关于102、112、122、132、142这五个数之间的等式吗?
得到等式102+112+122=132+142之后你的猜想是什么?
根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。
在难以找到的情况下,归结为方程去解决。
活动目的:
上述问题直接给出方程没有说服力,所以先让学生猜想。学生得到的猜想是:是否还存在五个连续整数,使前三个数的平方和等于后两个数的平方和。然后让学生根据猜想继续找这样的五个连续整数,在难以找到的情况下,促使学生想办法归结为方程去解决。
教学要求与效果:
找到等式102+112+122=132+142之后的猜想不同。再找五个连续整数,使前三个数的平方和等于后两个数的平方和,部分学生有困难,寻找的方式也有不同。有的同学采取代入特殊值一个一个去试一试,有的同学直接归结为方程去解决。
首先,“我”巡视那些无从下手的学生,问:需要我的帮助吗?然后给予必要的指导。
然后巡视那些已经解决问题的同学,给予适当的鼓励。关注学生在探索-发现-归纳的过程中的主动参与程度与合作交流意识,及时给予鼓励、指导。
从实际效果来看,学生的学习积极性很高,课上到这儿达到一个小高潮。
第三环节:自主探究问题三
活动内容:
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底端滑动多少米?
活动目的:
通过前两个环节的学习,直接让学生设未知数,列出适合条件的方程。
活动的实际效果:
先让学生理解题意,然后让一生结合图示分析题意,这样等量关系就会浮出水面。由于有了前两个环节作铺垫,学生自然地设梯子底端滑动Xm,从而列出方程,问题解决得很顺畅。
第四环节:总结归纳
活动内容:
归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。
活动目的:
关注学生对概念的理解,通过具体的例子来归纳一元二次方程的概念,加深对概念的理解。
活动的实际效果:学生基本能识别一元二次方程及各个部分。
第五环节:学以致用
活动内容:
1、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.
2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.
活动目的:及时巩固一元二次方程的有关概念,巩固学生通过实际问题列出相应方程。
活动的实际效果:
问题(1)中学生对于化成一元二次方程的一般形式感觉困难不大,但写出它的二次项系数、一次项系数和常数项时,部分学生可能容易忽视符号,作为第一次学习,这是难免的。当然,教学中也可以在第4环节中设计一种反向的问题,如给出各项系数,请写出事故和条件的方程;也可以在第四环节中,直接和学生辨析到底各项系数是什么。
问题(2),实际问题,可能有部分学生不能理解题意,部分学生不能很快列出相应的方程,教师要鼓励学生自己找到等量关系,然后将直角三角形的各边表示出来。
第六环节:反思
活动内容:
让学生通过本节课的学习,自己归纳本节的知识要点,学会了什么?还有哪些困惑?
活动目的:
让学生学会自己梳理知识要点,提高归纳总结的能力。
活动的实际效果:
绝大多数学生能自己归纳出本节的知识要点,也清楚自己的困惑和存在的问题。
第七环节:布置作业
作业:P33习题2、1
检测反馈 达成目标
1.在下列方程中,是一元二次方程的有(  )
①2x2-1=0;②ax2+bx+c=0;③(x+2)(x-3)=x2-3;④2x2-=0.
A.1个   B.2个   C.3个   D.4个
2.把方程(x-)(x+)+(2x-1)2=0化成一元二次方程的一般形式为(  )
A.5x2-4x-4=0 B.x2-5=0 C.5x2-2x+1=0 D.5x2-4x+6=0
3.(易错题)已知关于x的方程(m-2)x|m|+3x-4=0是一元二次方程,那么m的值是(  )
A.2     B.±2     C.-2     D.1
4.阅读材料,解答问题:
有一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:
(1)如果设小正方形的边长为xcm,那么盒子底面的长为 ;宽为 ,根据题意,所列方程为
(2)所列方程的一般形式是什么?是哪一种方程?并指出其各项的系数.
课件17张PPT。 《认识一元二次方程》数学、九年级、上册、北师大版什么叫一元一次方程?举例说明与一元一次方程一样,一元二次方程也是刻画现实世界的一个有效数学模型。“知识” 知多少教室地面有多宽幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2 的地毯 ,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?挑战自我解:如果设所求的宽为xm ,那么地毯中央长方形图案的长为 m,宽为    m,根据题意,可得方程:你能化简这个方程吗? (8-2x)(5-2x) (8 - 2x) (5 - 2x) = 18.5xxxx (8-2x)(5-2x)818m22x2x你能行吗?观察下面等式:
102+112+122=132+142
你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为:    ,    ,    ,    .你能化简这个方程吗?x+1x+2x+3x+4根据题意,可得方程:
             .生活中的数学如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?解:由勾股定理可知,滑动前梯子底端距墙
     m.
如果设梯子底端滑动x m,那么滑动后梯子底端距墙   m;
根据题意,可得方程:你能化简这个方程吗?6x+672+(x+6)2 =102xm8m10m7m6m10m1m 上面的方程都是只含有      的     ,并且都可以化为                  的形式,这样的方程叫做一元二次方程.一元二次方程的概念由上面三个问题,我们可以得到三个方程:把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2 , bx , c分别称为二次项、一次项和常数项,a, b分别称为二次项系数和一次项系数.(8-2x)(5-2x)=18;即 2x2 - 13x + 11 = 0 .x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2即 x2 - 8x - 20=0.( x+6)2+72=102即 x2 +12 x -15 =0.上述三个方程有什么共同特点?一个未知数x整式方程ax2+bx+c=0(a,b,c为常数, a≠0)“行家”看“门道”下列方程哪些是一元二次方程?(2)2x2-5xy+6y=0(5)x2+2x-3=1+x2(1)7x2-6x=0解: (1)、 (4) 2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:3x2-5x+1=0x2 + x-8=0或-7x2 +0 x+4=03-5+11+1-8-70 43-5 111-8-70 4或7x2 - 4=070 - 4-7x2 +4=0内涵与外延1.关于x的方程(k-3)x2 + 2x-1=0,当k _______    时,是一元二次方程.2.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,当k    时,是一元二次方程.当k    时,是一元一次方程.≠3≠±1=-13.当m=_______时,方程 (m-1) lml+1+2mx+3=0
是关于x的一元二次方程。- 1培养能力之源泉1.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.解:将原方程化简为:
9x2+12x+4=4(x2-6x+9)9x2+12x+4=9x2 5x2 + 36 x - 32=0二次项系数为 , 5+ 36- 32一次项系数为 ,常数项为 . 5 36 - 324 x2 -24x +36- 4 x2+ 24x- 36+ 12x+ 4=0解:设竹竿的长为x尺,则门的宽 度为 尺,长为 尺,依题意得方程:培养能力之阵地2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.(x-4)2+ (x-2)2= x2即x2-12 x +20 = 04尺2尺xx-4x-2(x-4)(x-2)回味无穷本节课你又学会了哪些新知识呢?
1.学习了什么是一元二次方程,以及它的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)和有关概念,如二次项、一次项、常数项、二次项系数、一次项系数.
2.会用一元二次方程表示实际生活中的数量关系
方程思想是一种重要的数学思想知识的升华1. 有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,这个正方形的边长是多少?解:设正方形的边长为xm,则原长方形的长为(x+5) m,宽为(x+2) m,依题意得方程: (x+5) (x+2) =54即x2 + 7x-44 =025xxX+5X+254m2知识的升华2. 三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?x (x+1) + x(x+2) + (x+1) (x+2) =242. x2 +2x-8 0=0.即解:设第一个数为 x,则另两个数分别为 x+1, x+2,依题意得方程:3.如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为885m2的6个矩形小块,则水渠应挖多宽?知识的升华结束寄语运用方程(方程组)解答相关的实际问题是一种重要的数学思想——方程的思想.
一元二次方程也是刻画现实世界的有效数学模型.