3.2函数模型及其应用学案(共2份)

文档属性

名称 3.2函数模型及其应用学案(共2份)
格式 zip
文件大小 855.9KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-05-21 08:15:05

文档简介

§3.2 函数模型及其应用
3.2.1 几类不同增长的函数模型
学习目标 1.了解指数函数、对数函数及幂函数等函数模型的增长差异.2.会根据函数的增长差异选择函数模型.
知识点一 函数模型
一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.
知识点二 三种常见函数模型的增长差异
比较三种函数模型的性质,填写下表.
   函数
性质   
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上的增减性
增函数
增函数
增函数
图象的变化
随x的增大逐渐变“陡”
随x的增大逐渐趋于稳定
随n值而不同
增长速度
ax的增长快于xn的增长,xn的增长快于logax的增长
增长后果
会存在一个x0,当x>x0时,有ax>xn>logax
1.先有实际问题,后有模型.( √ )
2.一个好的函数模型,既能与现有数据高度符合,又能很好地推演和预测.( √ )
3.增长速度越来越快的一定是指数函数模型.( × )
4.由于指数函数模型增长速度最快,所以对于任意x∈R恒有ax>x2(a>1).( × )
类型一 几类函数模型的增长差异
例1 (1)下列函数中,随x的增大,增长速度最快的是(  )
A.y=50x B.y=x50
C.y=50x D.y=log50x(x∈N*)
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 C
解析 四个函数中,增长速度由慢到快依次是y=log50x,
y=50x,y=x50,y=50x.
(2)函数y=2x-x2的大致图象为(  )
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 A
解析 在同一平面直角坐标系内作出y1=2x,y2=x2的图象(图略).易知在区间(0,+∞)上,当x∈(0,2)时,2x>x2,即此时y>0;当x∈(2,4)时,2x<x2,即y<0;
当x∈(4,+∞)时,2x>x2,即y>0;当x=-1时,y=2-1-1<0.据此可知只有选项A中的图象符合条件.
反思与感悟 在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就有logax<xn<ax.
跟踪训练1 函数f(x)=的大致图象为(  )
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 D
解析 f(x)为偶函数,排除A,B.当x>1时,y=lg|x|=lg x>0,且增长速度小于y=x2,所以当x→+∞时,→0且函数值为正数,故选D.
类型二 函数模型的增长差异在函数图象上的体现
例2 高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是(  )
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 B
解析 v=f(h)是增函数,且曲线的斜率应该是先变大后变小,故选B.
反思与感悟 一般来说,函数模型的增长速度与图象关系如下表:
增长速度
越来越快
不变
越来越慢
图象
/
跟踪训练2 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,则正确的是(  )
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 A
类型三 函数模型的应用
命题角度1 选择函数模型
例3 某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y与售出商品的数量x的关系,则可选用(  )
A.一次函数 B.二次函数
C.指数型函数 D.对数型函数
考点 建立函数模型解决实际问题
题点 对数函数模型的应用
答案 D
解析 四个函数中,A的增长速度不变,B,C增长速度越来越快,其中C增长速度比B更快,D增长速度越来越慢,故只有D能反映y与x的关系.
反思与感悟 根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性来确定适合题意的函数模型.
跟踪训练3 (2017·河南安阳检测)四人赛跑,假设其跑过的路程和时间的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是(  )
A.f1(x)=x2 B.f2(x)=4x
C.f3(x)=log2x D.f4(x)=2x
考点 建立函数模型解决实际问题
题点 指数函数模型的应用
答案 D
解析 四个函数模型中,增长速度最快的为f4(x)=2x.
存在x0,当x>x0时,有2x>x2>4x>log2x.
即时间足够长时,f4(x)路程最远.故选D.
命题角度2 用函数模型决策
例4 某公司预投资100万元,有两种投资可供选择:
甲方案年利率10%,按单利计算,5年后收回本金和利息;
乙方案年利率9%,按每年复利一次计算,5年后收回本金和利息.
哪种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
解 按甲,每年利息100×10%=10,5年后本息合计150万元;
按乙,第一年本息合计100×1.09,第二年本息合计100×1.092,…,5年后本息合计100×1.095≈153.86(万元).
故按乙方案投资5年可多得利3.86万元,乙方案投资更有利.
反思与感悟 建立函数模型是为了预测和决策,预测过程就是依据模型研究相应性质,得到结论后再返回实际问题给出决策.
跟踪训练4 一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票,按原价优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
解 设家庭中孩子数为x(x≥1,x∈N*),旅游收费为y,旅游原价为a.
甲旅行社收费:y=a+(x+1)=(x+3);
乙旅行社收费:y=(x+2).
∵(x+2)-(x+3)=(x-1),
∴当x=1时,两家旅行社收费相等.
当x>1时,甲旅行社更优惠.
1.下列函数中随x的增长而增长最快的是(  )
A.y=ex B.y=ln x C.y=x100 D.y=2x
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 A
2.能使不等式log2xA.(0,+∞) B.(2,+∞) C.(-∞,2) D.(4,+∞)
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 D
3.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12:00,其后t取正值,则下午3时温度为(  )
A.8℃ B.78℃ C.112℃ D.18℃
考点 建立函数模型解决实际问题
题点 幂函数模型的应用
答案 B
4.下列选项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是________.
①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
答案 ①
5.(2017·临沂期中)甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是________.(填序号)
①甲比乙先出发;②乙比甲跑的路程多;③甲、乙两人的速度相同;④甲比乙先到达终点.
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 ④
解析 由图知,甲、乙两人S与t的关系均为直线上升,路程S的增长速度不变,即甲、乙均为匀速运动,但甲的速度快.又甲、乙的路程S取值范围相同,即跑了相同的路程,故甲用时少,先到终点.
1.四类不同增长的函数模型
(1)增长速度不变的函数模型是一次函数模型.
(2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型.
(3)增长速度较慢的函数模型是对数型函数模型.
(4)增长速度平稳的函数模型是幂函数模型.
2.函数模型的应用
(1)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.
(2)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.
一、选择题
1.下列函数中,增长速度越来越慢的是(  )
A.y=6x B.y=log6x C.y=x6 D.y=6x
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 B
解析 D增长速度不变,A,C增长速度越来越快,只有B符合题意.
2.以下四种说法中,正确的是(  )
A.幂函数增长的速度比一次函数增长的速度快
B.对任意的x>0,xa>logax
C.对任意的x>0,ax>logax
D.不一定存在x0,当x>x0时,总有ax>xa>logax
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 D
解析 对于A,幂函数与一次函数的增长速度分别受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长速度不能比较;对于B,C,显然不成立;对于D,当a>1时,一定存在x0,使得当x>x0时,总有ax>xa>logax,但若去掉限制条件“a>1”,则结论不成立.
3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是(  )
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 D
解析 设该林区的森林原有蓄积量为a,
由题意,ax=a(1+0.104)y,故y=log1.104x(x≥1),
∴y=f(x)的图象大致为D中图象.
4.下面给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是(  )
A.指数函数:y=2t B.对数函数:y=log2t
C.幂函数:y=t3 D.二次函数:y=2t2
考点 建立函数模型解决实际问题
题点 指数函数模型的应用
答案 A
解析 由题干中的图象可知,该函数模型应为指数函数.
5.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:毫克/升)与过滤时间t(单位:时)之间的函数关系式为:P=P0e-kt(k,P0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%,那么,至少还需要过滤的时间为(  )
A.小时 B.小时
C.5小时 D.10小时
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
答案 C
解析 由题意知前5个小时消除了90%的污染物.
∵P=P0e-kt,∴(1-90%)P0=P0e-5k,∴0.1=e-5k,
即-5k=ln 0.1,∴k=-ln 0.1.由1%P0=P0e-kt,
即0.01=e-kt,∴-kt=ln 0.01,∴t=ln 0.01,
∴t=10,∴至少还需要过滤5小时才可以排放.
6.向高为H的水瓶内注水,一直到注满为止,如果注水量V与水深h的函数图象如图所示,那么水瓶的形状大致是(  )
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 B
解析 水深h为自变量,随着h增大,A中V增长速度越来越快,C中先慢后快,D增长速度不变,只有B中V增长速度越来越慢.
7.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份(  )
A.甲食堂的营业额较高
B.乙食堂的营业额较高
C.甲、乙两食堂的营业额相同
D.不能确定甲、乙哪个食堂的营业额较高
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
答案 A
解析 设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可知,m+8a=m×(1+x)8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m×(1+x)4=,因为y-y=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故本年5月份甲食堂的营业额较高.
8.我们处在一个有声的世界里,不同场合人们对声音的音量会有不同的要求.音量大小的单位是分贝(dB).对于一个强度为I的声波,其音量的大小η可由如下公式计算:η=10·lg(其中I0是人耳能听到的声音的最低声波强度).设η1=70 dB的声音强度为I1,η2=60 dB的声音强度为I2,则I1是I2的(  )
A.倍 B.10倍 C.10倍 D.ln倍
考点 建立函数模型解决实际问题
题点 对数函数模型的应用
答案 B
解析 由题意,令70=10lg,则有I1=I0×107.
同理得I2=I0×106,所以=10.
二、填空题
9.某厂日产手套总成本y(元)与手套日产量x(双)的关系式为y=5x+4 000,而手套出厂价格为每双10元,则该厂为了不亏本,日产手套至少为________双.
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
答案 800
解析 要使该厂不亏本,只需10x-y≥0,即10x-(5x+4 000)≥0,解得x≥800.
10.在不考虑空气阻力的情况下,火箭的最大速度v m/s和燃料质量M kg,火箭(除燃料外)质量m kg的关系是v=2 000ln,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.
考点 建立函数模型解决实际问题
题点 对数函数模型的应用
答案 e6-1
解析 由题意可知2 000ln=12 000,
∴ln=6,从而=e6-1.
11.某种动物繁殖数量y(只)与时间x(年)的关系式为y=alog2(x+1),设这种动物第一年有100只,则到第7年这种动物发展到________只.
考点 建立函数模型解决实际问题
题点 对数函数模型的应用
答案 300
解析 把x=1,y=100代入y=alog2(x+1)中,
得a=100,
故函数关系式为y=100log2(x+1),
所以当x=7时,y=100log2(7+1)=300,
所以到第7年这种动物发展到300只.
三、解答题
12.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,求本利和y随存期x变化的函数关系式.
考点 建立函数模型解决实际问题
题点 指数函数模型的应用
解 已知本金为a元,利率为r,则1期后本利和为y=a+ar=a(1+r),2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2,3期后本利和为y=a(1+r)3,
…,
x期后本利和为y=a(1+r)x,x∈N*.
13.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖挂4节车厢,一天能来回16次,如果该车每次拖挂7节车厢,则每天能来回10次.
(1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数的解析式和定义域;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
解 (1)设每天来回y次,每次拖挂x节车厢,由题意设y=kx+b(k≠0),当x=4时,y=16,当x=7时,y=10,得到16=4k+b,10=7k+b,解得k=-2,b=24,
∴y=-2x+24.
依题意有
解得定义域为{x∈N|0≤x≤12}.
(2)设每天来回y次,每次拖挂x节车厢,由题意知,每天拖挂车厢最多时,运营人数最多,设每天拖挂S节车厢,则S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72,x∈[0,12]且x∈N.所以当x=6时,Smax=72,
此时y=12,则每日最多运营人数为110×72=7 920.
故这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7 920.
四、探究与拓展
14.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)
给出以下3个论断:
①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.
则正确论断是________.(填序号)
考点 三种函数模型增长的差异
题点 三种函数模型增长速度的差异
答案 ①
解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.
15.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如表:
时间t(单位:天)
60
100
180
种植成本Q(单位:元/100 kg)
116
84
116
根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.
利用你选取的函数,求得:西红柿种植成本最低时的上市天数是________;最低种值成本是________元/100 kg.
考点 建立函数模型解决实际问题
题点 建立函数模型解决实际问题
答案 120 80
解析 因为随时间的增加,种植成本先减少后增加,而且当t=60和t=180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用函数Q=a(t-120)2+m描述.将表中数据代入可得则所以Q=0.01(t-120)2+80,故当上市天数为120时,种值成本取到最低值80元/100 kg.
3.2.2 函数模型的应用实例
学习目标 1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.3.了解建立拟合函数模型的步骤,并了解检验和调整的必要性.
知识点一 几类已知函数模型
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a,b为常数,a≠0)
反比例函数模型
f(x)=+b(k,b为常数且k≠0)
二次函数模型
f(x)=ax2+bx+c(a,b,c为常数,a≠0)
指数型函数模型
f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)
对数型函数模型
f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)
幂函数型模型
f(x)=axn+b(a,b为常数,a≠0)
知识点二 应用函数模型解决问题的基本过程
用函数模型解应用题的四个步骤
(1)审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型;
(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;
(3)求模——求解数学模型,得出数学模型;
(4)还原——将数学结论还原为实际问题.
1.实际问题中两个变量之间一定有确定的函数关系.( × )
2.用来拟合散点图的函数图象一定要经过所有散点.( × )
3.函数模型中,要求定义域只需使函数式有意义.( × )
4.用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在意义了.( × )
类型一 利用已知函数模型求解实际问题
例1 某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开出13 km后,以120 km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2 h内行驶的路程.
考点 函数模型的应用
题点 一次、二次函数模型的应用
解 因为火车匀速运动的时间为(277-13)÷120 = (h),所以0≤t≤.
因为火车匀速行驶t h所行驶的路程为120t km,所以,火车运行总路程S与匀速行驶时间t之间的关系是S=13+120t.2 h内火车行驶的路程S=13+120×=233(km).
反思与感悟 在实际问题中,有很多问题的两变量之间的关系是已知函数模型,这时可借助待定系数法求出函数解析式,再根据解题需要研究函数性质.
跟踪训练1 如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.则水位下降1米后,水面宽________米.
考点 函数模型的应用
题点 一次、二次函数模型的应用
答案 2
解析 以拱顶为原点,过原点与水面平行的直线为x轴,建立平面直角坐标系(如图),则水面和拱桥交点A(2,-2),设抛物线所对应的函数关系式为y=ax2(a≠0),则-2=a·22,∴a=-,∴y=-x2.当水面下降1米时,水面和拱桥的交点记作B(b,-3),将B点的坐标代入到y=-x2中,得b=±,因此水面宽2米.
类型二 自建确定性函数模型解决实际问题
例2 某住宅小区为了营造一个优雅、舒适的生活环境,打算建造一个八边形的休闲花园,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成面积为200米2的十字形区域,且计划在正方形MNPK上建一座花坛,其造价为4 200元/米2,在四个相同的矩形上(图中的阴影部分)铺花岗岩路面,其造价为210元/米2,并在四个三角形空地上铺草坪,其造价为80元/米2.
(1)设AD的长为x米,试写出总造价Q(单位:元)关于x的函数解析式;
(2)问:当x取何值时,总造价最少?求出这个最小值.
考点 函数模型的综合应用
题点 函数模型中的最值问题
解 (1)设AM=y,AD=x,
则x2+4xy=200,∴y=.
故Q=4 200x2+210×4xy+80×2y2
=38 000+4 000x2+(0(2)令t=x2,则Q=38 000+4 000,
且0∵函数u=t+在(0,10]上单调递减,在[10,200)上单调递增,
∴当t=10时,umin=20.
故当x=时,Qmin=118 000(元).
反思与感悟 自建模型时主要抓住四个关键:“求什么,设什么,列什么,限制什么”.
求什么就是弄清楚要解决什么问题,完成什么任务.
设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素为自变量.
列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等.
限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等.
跟踪训练2 某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
旅游点规定:每辆自行车的日租金不低于3元并且不超过20元,每辆自行车的日租金x元只取整数,用y表示出租所有自行车的日净收入.(日净收入即一日中出租的所有自行车的总收入减去管理费用后的所得)
(1)求函数y=f(x)的解析式;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
考点 函数模型的应用
题点 分段函数模型的应用
解 (1)当3≤x≤6时,y=50x-115,令50x-115>0,
解得x>2.3.
又因为x∈N,所以3≤x≤6,且x∈N.
当6<x≤20,且x∈N时,
y=[50-3(x-6)]x-115=-3x2+68x-115,
综上可知
y=f(x)=
(2)当3≤x≤6,且x∈N时,因为y=50x-115是增函数,所以当x=6时,ymax=185元.
当6<x≤20,且x∈N时,
y=-3x2+68x-115=-32+,
所以当x=11时,ymax=270元.
综上所述,当每辆自行车日租金定为11元时才能使日净收入最多,为270元.
类型三 建立拟合函数模型解决实际问题
例3 某个体经营者把开始六个月试销A,B两种商品的逐月投资金额与所获纯利润列成下表.
投资A种商品金额(万元)
1
2
3
4
5
6
获纯利润(万元)
0.65
1.39
1.85
2
1.84
1.40
投资B种商品金额(万元)
1
2
3
4
5
6
获纯利润(万元)
0.30
0.59
0.88
1.20
1.51
1.79
该经营者准备第七个月投入12万元经营这两种商品,但不知A,B两种商品各投入多少万元才合算,请你帮助制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第七个月可获得的最大纯利润(结果保留两位有效数字).
考点 函数拟合问题
题点 据实际问题选择函数模型
解 以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示.
观察散点图可以看出,A种商品所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图①所示.取(4,2)为最高点,则y=a(x-4)2+2(a≠0),再把点(1,0.65)代入,得0.65=a(1-4)2+2,解得a=-0.15,所以y=-0.15(x-4)2+2.
B种商品所获纯利润y与投资额x之间的变化规律是线性的,可以用一次函数模型进行模拟,如图②所示.
设y=kx+b(k≠0),取点(1,0.30)和(4,1.20)代入,
得解得
所以y=0.3x.
设第七个月投入A,B两种商品的资金分别为x万元,(12-x)万元,总利润为W万元,那么W=yA+yB
=-0.15(x-4)2+2+0.3(12-x),
所以W=-0.15(x-3)2+0.15×9+3.2.
当x=3时,W取最大值,约为4.6万元,此时B商品的投资为9万元.
故该经营者下个月把12万元中的3万元投资A种商品,9万元投资B种商品,可获得最大利润,约为4.6万元.
反思与感悟 在建立和应用函数模型时,准确地把题目要求翻译成数学问题非常重要,另外实际问题要注意实际意义对定义域、取值范围的影响.
跟踪训练3 某商场经营一批进价为每件30元的商品,在市场销售中发现此商品的销售单价x元与日销量y件之间有如下关系:
销售单价x(元)
30
40
45
50
日销售量y(件)
60
30
15
0
(1)在所给坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定x与y的一个函数关系式y=f(x).
(2)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润.
考点 函数拟合问题
题点 据实际问题选择函数模型
解 实数对(x,y)对应的点如图所示,由图可知y是x的一次函数.
(1)设f(x)=kx+b,
则
解得
所以f(x)=-3x+150,30≤x≤50,检验成立.
(2)P=(x-30)·(-3x+150)
=-3x2+240x-4 500,30≤x≤50,
所以对称轴x=-=40∈[30,50].
答 当销售单价为40元时,所获利润最大.
1.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是(  )
A.分段函数 B.二次函数
C.指数函数 D.对数函数
考点 函数拟合问题
题点 函数拟合问题
答案 A
2.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是(  )
A. B.y=(0.957 6)100x
C.y=x D.
考点 函数模型的应用
题点 指数、对数函数模型的应用
答案 A
3.某种植物生长发育的数量y与时间x的关系如下表:
x
1
2
3

y
1
3
8

则下面的函数关系式中,拟合效果最好的是(  )
A.y=2x-1 B.y=x2-1
C.y=2x-1 D.y=1.5x2-2.5x+2
考点 函数拟合问题
题点 函数拟合问题
答案 D
4.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是(  )
A.y=ax+b B.y=ax2+bx+c
C.y=aex+b D.y=aln x+b
考点 函数拟合问题
题点 函数拟合问题
答案 B
5.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
考点 函数模型的综合应用
题点 函数模型中的最值问题
解 设可获得总利润为R(x)万元,
则R(x)=40x-y=40x-+48x-8 000
=-+88x-8 000
=-(x-220)2+1 680(0≤x≤210).
∵R(x)在[0,210]上是增函数,
∴当x=210时,
R(x)max=-(210-220)2+1 680=1 660(万元).
∴年产量为210吨时,可获得最大利润1 660万元.
解函数应用问题的步骤(四步八字)
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)求模:求解数学模型,得出数学结论;
(4)还原:将数学问题还原为实际问题.
一、选择题
1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(  )
x
1.992
3
4
5.15
6.126
y
1.517
4.041 8
7.5
12
18.01
A.y=2x-2 B.y=(x2-1)
C.y=log2x D.y=
考点 函数模型的应用
题点 一次、二次函数模型的应用
答案 B
解析 由题中表格可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.
2.(2017·湖南衡阳、长郡中学等十三校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)(  )
A.2017年 B.2018年 C.2019年 D.2020年
考点 函数模型的应用
题点 指数、对数函数模型的应用
答案 D
解析 设从2016年起,过了n(n∈N*)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n≥200,则n≥≈=3.8,由题意取n=4,则n+2 016=2 020.故选D.
3.随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3 000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2021年年底该地区的农民人均年收入为(  )
A.3 000×1.06×7元 B.3 000×1.067元
C.3 000×1.06×8元 D.3 000×1.068元
考点 函数模型的应用
题点 指数、对数函数模型的应用
答案 B
解析 根据题意,逐年归纳,总结规律建立关于年份的指数型函数模型,设经过x年,该地区的农民人均年收入为y元,依题意有y=3 000×1.06x,因为2014年年底到2021年年底经过了7年,故把x=7代入,即可求得y=3 000×1.067.故选B.
4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为(  )
A.x=15,y=12 B.x=12,y=15
C.x=14,y=10 D.x=10,y=14
考点 函数模型的应用
题点 一次、二次函数模型的应用
答案 A
解析 由三角形相似得=,
得x=(24-y),
∴S=xy=-(y-12)2+180(8≤y<24).
∴当y=12时,S有最大值,此时x=15.
5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次试验的数据.根据上述函数模型和试验数据,可以得到最佳加工时间为(  )
A.3.50分钟 B.3.75分钟
C.4.00分钟 D.4.25分钟
考点 函数模型的应用
题点 一次、二次函数模型的应用
答案 B
解析 依题意得解得
所以p=-0.2t2+1.5t-2=-0.22+,
所以当t=3.75时,p取得最大值,所以最佳加工时间为3.75分钟.故选B.
6.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似满足关系y=alog3(x+2),观测发现2012年冬(作为第1年)有越冬白鹤3 000只,估计到2018年冬有越冬白鹤(  )
A.4 000只 B.5 000只 C.6 000只 D.7 000只
考点 函数模型应用
题点 指数、对数函数模型的应用
答案 C
解析 当x=1时,由3 000=alog3(1+2),得a=3 000,所以到2018年冬,即第7年,y=3 000×log3(7+2)=6 000.故选C.
7.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益,每件售价应降低的价格为(  )
A.2元 B.2.5元 C.1元 D.1.5元
考点 函数模型的综合应用
题点 函数模型中最值问题
答案 D
解析 设每件降价0.1x元,则每件获利(4-0.1x)元,每天卖出商品件数为(1 000+100x),利润y=(4-0.1x)·(1 000+100x)=-10x2+300x+4 000=-10(x2-30x+225-225)+4 000=-10(x-15)2+6 250.∴当x=15时,ymax=6 250.故每件售价降低1.5元时,可获得最好的经济效益.
8.在股票买卖过程中,经常用到两种曲线:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x).例如,f(2)=3是指开始买卖2小时的即时价格为3元;g(2)=3是指开始买卖2小时内的平均价格为3元.下图给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是(  )
考点 函数拟合问题
题点 据实际问题选择函数模型
答案 C
解析 开始时平均价格与即时价格一致,排除A,D;平均价格不能一直大于即时价格,排除B.
二、填空题
9.工厂生产某种产品的月产量y(万件)与月份x满足关系y=a·0.5x+b,现已知该厂今年1月份,2月份生产该产品分别为1万件,1.5万件,则此工厂3月份生产该产品的产量为________万件.
考点 函数模型的应用
题点 指数、对数函数模型的应用
答案 1.75
解析 由题意有
解得 ∴y=-2×0.5x+2,
∴3月份产量为y=-2×0.53+2=1.75(万件).
10.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过________小时才能开车.(精确到1小时,参考数据:lg 3≈0.477,lg 4≈0.602)
考点 函数模型的应用
题点 指数、对数函数模型的应用
答案 5
解析 设至少经过x小时才能开车,由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3,x≥log0.750.3≈4.2.
11.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为函数模型.
考点 函数拟合问题
题点 据实际问题选择函数模型
答案 甲
解析 将x=3分别代入y=x2+1及y=3x-1中,得y=32+1=10,y=3×3-1=8.由于10更接近10.2,所以选用甲模型.
三、解答题
12.牧场中羊群的最大畜养量为m只,为保证羊群的生长空间,实际畜养量不能达到最大畜养量,必须留出适当的空闲量.已知羊群的年增长量y只和实际畜养量x只与空闲率的乘积成正比,比例系数为k(k>0).
(1)写出y关于x的函数解析式,并指出这个函数的定义域;
(2)求羊群年增长量的最大值;
(3)当羊群的年增长量达到最大值时,求k的取值范围.
考点 函数模型的综合应用
题点 函数模型中的最值问题
解 (1)根据题意,由于最大畜养量为m只,实际畜养量为x只,则畜养率为,故空闲率为1-,由此可得y=kx(0(2)对原二次函数配方,得y=-(x2-mx)
=-2+.
即当x=时,y取得最大值.
(3)由题意知为给羊群留有一定的生长空间,则实际畜养量与年增长量的和小于最大畜养量,即0因为当x=时,ymax=,所以0<+解得-2又因为k>0,所以013.季节性服装的销售当旺季来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后旺季过去,平均每周减价2元,直到16周后,该服装不再销售.
(1)试建立价格p与周次t之间的函数关系式;
(2)若此服装每周进货一次,每件进价Q与周次t之间的关系式为Q=-0.125(t-8)2+12,t∈[0,16],t∈N,试问该服装第几周每件销售利润最大?最大值是多少?
考点 函数模型的综合应用
题点 函数模型中的最值问题
解 (1)p=
(2)设第t周时每件销售利润为L(t),
则L(t)=
=
当t∈[0,5],t∈N时,L(t)单调递增,
L(t)max=L(5)=9.125;
当t∈(5,10],t∈N时,L(t)max=L(6)=L(10)=8.5;当t∈(10,16],t∈N时,L(t)单调递减,
L(t)max=L(11)=7.125.
由9.125>8.5>7.125,知L(t)max=9.125.
从而第5周每件销售利润最大,最大值为9.125元.
四、探究与拓展
14.某商场在国庆促销期间规定,商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围
[200,400)
[400,500)
[500,700)
[700,900)

获得奖券的金额(元)
30
60
100
130

根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×0.2+30=110(元).若顾客购买一件标价为1 000元的商品,则所能得到的优惠额为________元.
考点 函数模型的应用
题点 分段函数模型的应用
答案 330
解析 依题意知,得到的优惠额为1 000×(1-80%)+130=200+130=330(元).
15.某池塘中野生水葫芦的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,并给出了下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积就会超过30 m2;
③野生水葫芦从4 m2蔓延到12 m2只需1.5个月;
④设野生水葫芦蔓延到2 m2,3 m2,6 m2所需的时间分别为t1,t2,t3,则有t1+t2=t3.
其中正确的说法有________.(请把正确说法的序号都填在横线上)
考点 函数模型的应用
题点 指数、对数函数模型的应用
答案 ①②④
解析 该指数函数的解析式为f(x)=2x,所以①正确;当x=5时,f(5)=32>30,所以②正确;由f(x1)=2x1=4和f(x2)=2x2=12,得x1=2,x2=log212=2+log23,所以x2-x1=log23>1.5,所以③错误;设2t1=2,2t2=3,2t3=6,则t1=1,t2=log23,t3=log26,则t1+t2=1+log23=log2(2×3)=log26=t3,所以④正确.