第三章概率复习学案+检测题(2份)

文档属性

名称 第三章概率复习学案+检测题(2份)
格式 zip
文件大小 369.6KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-05-21 08:07:50

文档简介

章末复习
学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率.2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率.
1.频率与概率
频率是概率的近似值,是随机的,随着试验的不同而变化;概率是多数次的试验中频率的稳定值,是一个常数,不要用一次或少数次试验中的频率来估计概率.
2.求较复杂概率的常用方法
(1)将所求事件转化为彼此互斥的事件的和;
(2)先求其对立事件的概率,然后再应用公式P(A)=1-P()求解.
3.古典概型概率的计算
关键要分清基本事件的总数n与事件A包含的基本事件
的个数m,再利用公式P(A)=求解.有时需要用列举法把基本事件一一列举出来,在列举时必须按某一顺序做到不重不漏.
1.对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ )
2.“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽”与“不发芽”.( × )
                   
类型一 频率与概率
例1 对一批U盘进行抽检,结果如下表:
抽出件数a
50
100
200
300
400
500
次品件数b
3
4
5
5
8
9
次品频率
(1)计算表中次品的频率;
(2)从这批U盘中任意抽取一个是次品的概率约是多少?
(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘?
解 (1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.
(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任意抽取一个是次品的概率约是0.02.
(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,
所以x≥2 041,即至少需进货2 041个U盘.
反思与感悟 概率是个常数.但除了几类概型,概率并不易知,故可用频率来估计.
跟踪训练1 某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:
射击次数n
10
20
50
100
200
500
击中靶心次数m
8
19
44
92
178
455
击中靶心的频率
0.8
0.95
0.88
0.92
0.89
0.91
(1)该射击运动员射击一次,击中靶心的概率大约是多少?
(2)假如该射击运动员射击了300次,则击中靶心的次数大约是多少?
(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?
(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?
解 (1)由题意得,击中靶心的频率与0.9接近,故概率约为0.9.
(2)击中靶心的次数大约为300×0.9=270.
(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击中靶心的概率仍是0.9,所以不一定不击中靶心.
(4)不一定.
类型二 互斥事件与对立事件
例2 甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.
(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
解 把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;
“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;
“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种.
因此基本事件的总数为6+6+6+2=20.
(1)“甲抽到选择题,乙抽到判断题”的概率为=,“甲抽到判断题,乙抽到选择题”的概率为=,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为+=.
(2)“甲、乙两人都抽到判断题”的概率为=,故“甲、乙两人至少有一人抽到选择题”的概率为1-=.
反思与感悟 在求有关事件的概率时,若从正面分析,包含的事件较多或较烦琐,而其反面却较容易入手,这时,可以利用对立事件求解.
跟踪训练2 猎人在距离100米处射击一野兔,命中的概率为,如果第一次没有命中,则猎人进行第二次射击,但距离已是150米,如果又没有击中,则猎人进行第三次射击,但距离已是200米.已知猎人命中兔子的概率与距离的平方成反比,则三次内击中野兔的概率是多少?
解 三次内击中野兔,即第一次击中野兔或第二次击中野兔或第三次击中野兔,设第一、二、三次击中野兔分别为事件A,B,C.
设距离为d,命中的概率为P,则有P=,
将d=100,P=代入上式,可得k=5 000,
所以P=,
所以P(B)==,P(C)==.
又已知P(A)=,
所以P(A∪B∪C)=P(A)+P(B)+P(C)
=++=.
故三次内击中野兔的概率为.
类型三 古典概型
例3 某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号
A1
A2
A3
A4
A5
质量指标(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指标(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样本的一等品中,随机抽取2件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
解 (1)计算10件产品的综合指标S,如下表:
产品编号
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
S
4
4
6
3
4
5
4
5
3
5
其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.
(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.
②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.
所以P(B)==.
跟踪训练3 有4张面值相同的债券,其中有2张中奖债券.
(1)有放回地从债券中任取2张,每次取出1张,计算取出的2张中至少有1张是中奖债券的概率;
(2)无放回地从债券中任取2张,每次取出1张,计算取出的2张中至少有1张是中奖债券的概率.
解 (1)把4张债券分别编号1,2,3,4,其中3,4是中奖债券,用(a,b)表示“第一次取出a号债券,第二次取出b号债券”,则所有可能的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.
用C表示“有放回地从债券中任取2次,取出的2张都不是中奖债券”,则表示“有放回地从债券中任取2张,取出的2张中至少有1张是中奖债券”,
则C={(1,1),(1,2),(2,1),(2,2)},
所以P()=1-P(C)=1-=.
(2)无放回地从债券中任取2张,则所有可能的基本事件为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种.
用D表示“无放回地从债券中任取2张,取出的2张都不是中奖债券”,则表示“无放回地从债券中任取2张,取出的2张至少有1张是中奖债券”,
则D={(1,2),(2,1)}.
所以P()=1-P(D)=1-=.
1.下列事件:
①任取三条线段,这三条线段恰好组成直角三角形;②从一个三角形的三个顶点各任画一条射线,这三条射线交于一点;③实数a,b都不为0,但a2+b2=0;④明年12月28日的最高气温高于今年12月28日的最高气温,
其中为随机事件的是(  )
A.①②③ B.①②④
C.①③④ D.②③④
答案 B
解析 任取三条线段,这三条线段可能组成直角三角形,也可能组不成直角三角形,故①为随机事件;
从一个三角形的三个顶点各任画一条射线,三条射线可能不相交,交于一点、交于两点、交于三点,故②为随机事件;若实数a,b都不为0,则a2+b2一定不等于0,故③为不可能事件;由于明年12月28日还未到来,故明年12月28日的最高气温可能高于今年12月28日的最高气温,也可能低于今年12月28日的最高气温,还可能等于今年12月28日的最高气温.故④为随机事件.故选B.
2.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件 B.互斥但不对立事件
C.不可能事件 D.必然事件
答案 B
解析 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.
3.不透明袋子中放有大小相同的5个球,球上分别标有号码1,2,3,4,5,若从袋中任取3个球,则这3个球号码之和为5的倍数的概率为(  )
A. B. C. D.
解析 基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种,满足要求的基本事件有(1,4,5),(2,3,5),
共2种,故所求概率为.故选B.
4.任取一个三位正整数N,则对数log2N是一个正整数的概率是(  )
A. B.
C. D.
答案 C
解析 三位正整数有100~999,共900个,而满足log2N为正整数的N有27,28,29,共3个,故所求事件的概率为=.
1.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.若事件A1,A2,A3,…,An彼此互斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
2.关于古典概型,必须要解决好下面三个方面的问题
(1)本试验是不是等可能的?
(2)本试验的基本事件有多少个?
(3)事件A是什么,它包含多少个基本事件?
只有回答好这三个方面的问题,解题才不会出错.
一、选择题
1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:
“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的(  )
A.①② B.①③
C.②③ D.①②③
答案 A
解析 从装有红球、白球和黑球各2个的口袋内一次取出2个球,基本事件为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.②符合,理由同上.③两球至少有一个白球,其中包含两个都是白球,故不互斥.
2.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,则恰有一件次品的概率为(  )
A.0.4 B.0.6
C.0.8 D.1
答案 B
解析 用列举法列出基本事件总数为10.事件“恰有一件次品”包含的基本事件个数为6,则P==0.6.
3.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是(  )
A. B. C. D.
答案 D
解析 从五个数中任意取出两个不同的数,有10个基本事件,若取出的两数之和等于5,则有(1,4),(2,3),共有2种,所以取出的两数之和等于5的概率=.
4.已知口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,若摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是(  )
A.0.42 B.0.28
C.0.3 D.0.7
答案 C
解析 因为“摸出黑球”的对立事件是“摸出红球或摸出白球”,所以摸出黑球的概率是1-0.42-0.28=0.3.
5.集合A={1,2,3,4,5},B={0,1,2,3,4},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=6上方的概率为(  )
A. B.
C. D.
答案 D
解析 基本事件总数为25,
点P在直线x+y=6上方的个数为6,
∴P=.
6.抛掷一枚质地均匀的骰子,向上的一面出现任意一个点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)等于(  )
A. B.
C. D.
答案 C
解析 事件A∪B为“向上的点数是奇数或向上的点数不超过3”,共包含点数为1,2,3,5四种情况,
所以P(A∪B)==,故选C.
7.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为(  )
A. B.
C. D.
答案 C
解析 记取到语文、数学、英语、物理、化学书分别为事件A,B,C,D,E,则A,B,C,D,E互斥,取到理科书的概率为事件B,D,E概率的和.
∴P(B+D+E)=P(B)+P(D)+P(E)=++=.
8.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是(  )
A. B.
C. D.
答案 A
解析 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7),共四种,其中能构成三角形的有(3,5,7)一种,故概率P=.
9.有一种竞猜游戏,游戏规则为:在20个商标牌中,有5个商标牌的背面注明了一定的奖金金额,其余商标牌的背面是一张笑脸,若翻到笑脸,则不得奖,参加这个游戏的人有三次翻牌的机会.某人前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么此人第三次翻牌获奖的概率是(  )
A. B. C. D.
答案 B
解析 由题意知,第三次翻牌时,还有18个商标牌,其中有奖的商标牌还有3个,故所求概率P==.
二、填空题
10.从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.
答案 
解析 基本事件有ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10个.其中有a的事件的个数为4个,故所求概率为P==.
11.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则他们淋雨的概率为________.
答案 
解析 用A,B分别表示下雨和不下雨,用a,b表示帐篷运到和运不到,则所有可能情形为(A,a),(A,b),(B,a),(B,b),则当(A,b)发生时就会被雨淋到,∴淋雨的概率为P=.
三、解答题
12.5件产品中有3件一等品和2件二等品,从中任取2件,求至多有一件是一等品的概率.
解 将3件一等品编号为1,2,3,将2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).恰有2件一等品的取法有(1,2),(1,3),(2,3),共3种,故恰有2件一等品的概率P2=,其对立事件是“至多有1件一等品”,所以对立事件的概率P3=1-P2=1-=.
13.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解 (1)由题意,得(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3, 1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.
所以P(A)==.
因此,“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种.
所以P(B)=1-P()=1-=.
因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.
四、探究与拓展
14.设集合A={0,1,2},B={0,1,2},从集合A和B中各随机取一个数,分别记为a,b,从而确定平面上的一个点P(a,b),设“点P(a,b)落在直线x+y=n上”为事件Cn(0≤n≤4,n∈N).若事件Cn的概率最大,则n的值为________.
答案 2
解析 基本事件为:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共9个.
当n=0时,落在直线x+y=0上的点只有(0,0);
当n=1时,落在直线x+y=1上的点有(0,1),(1,0),
共2个;
当n=2时,落在直线x+y=2上的点只有(1,1),(2,0),(0,2),共3个;
当n=3时,落在直线x+y=3上的点只有(1,2),(2,1),共2个;
当n=4时,落在直线x+y=4上的点只有(2,2).
因此,当事件Cn的概率最大时,n=2.
15.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?说明你的理由.
解 (1)设(i,j)表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.
(2)甲抽到红挑3,乙抽到的牌只能是红桃2,红桃4,方片4.因此乙抽到的牌的数字大于3的概率为.
(3)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∴甲胜的概率P1=,乙胜的概率P2=.∵<,∴此游戏不公平.
章末检测试卷
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.下列事件中,随机事件的个数是(  )
①2020年8月18日,北京市不下雨;
②在标准大气压下,水在4℃时结冰;
③从标有1,2,3,4的4张号签中任取一张,恰为1号签;
④若x∈R,则x2≥0.
A.1 B.2 C.3 D.4
考点 随机事件
题点 随机事件的判断
答案 B
解析 ①③为随机事件,②为不可能事件,④为必然事件.
2.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是(  )
A. B. C. D.
考点 概率的意义
题点 概率的意义
答案 A
解析 总体个数为N,样本容量为M,则每一个个体被抽到的概率为P===.
3.若干个人站成一排,其中为互斥事件的是(  )
A.“甲站排头”与“乙站排头”
B.“甲站排头”与“乙不站排尾”
C.“甲站排头”与“乙站排尾”
D.“甲不站排头”与“乙不站排尾”
考点 互斥事件
题点 互斥事件的判断
答案 A
解析 由互斥事件的定义可得,“甲站排头”与“乙站排头”为互斥事件.
4.若“A+B”发生(A,B中至少有一个发生)的概率为0.6,则,同时发生的概率为(  )
A.0.6 B.0.36 C.0.24 D.0.4
答案 D
解析 “A+B”发生指A,B中至少有一个发生,它的对立事件为A,B都不发生,即,同时发生.故,同时发生的概率为1-0.6=0.4.
5.甲、乙两人每人可以用手出0,5,10三种数字,同时可以喊0,5,10,15,20五种数字,当两人所出数字之和等于某人所喊数字时为胜,若甲喊10,乙喊15,则(  )
A.甲胜的概率大 B.乙胜的概率大
C.甲、乙胜的概率一样大 D.不能确定
答案 A
解析 甲、乙两人用手共有9种出法,其中和为10的出法有3种,和为15的出法有2种,故甲胜的概率大.
6.掷一枚均匀的硬币两次,事件M:“一次正面朝上,一次反面朝上”;事件N:“至少一次正面朝上”,则下列结果正确的是(  )
A.P(M)=,P(N)=
B.P(M)=,P(N)=
C.P(M)=,P(N)=
D.P(M)=,P(N)=
答案 D
解析 U={(正,正),(正,反),(反,正),(反,反)},
M={(正,反),(反,正)},N={(正,正),(正,反),(反,正)},故P(M)=,P(N)=.
7.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率为的是(  )
A.颜色相同 B.颜色不全同
C.颜色全不同 D.无红球
答案 B
解析 有放回地取球3次,共27种可能结果,其中颜色相同的结果有3种,其概率为=;颜色不全同的结果有24种,其概率为=;颜色全不同的结果有3种,其概率为=;无红球的结果有8种,其概率为.故选B.
8.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为(  )
A. B.
C. D.
考点 古典概型的概率求法
题点 古典概型概率公式的直接应用
答案 C
解析 从1,2,3,4,5中任取3个不同的数,有10种方法.能成为勾股数的只有3,4,5一组,∴P=.
9.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为(  )
A. B. C. D.
答案 A
解析 任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i)(i=0,1,2,…,9);(1,i)(i=0,1,2,…,9);(2,i)(i=0,1,2,…,9);…;(9,i)(i=0,1,2,…,9),故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种.故所求概率为.
10.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个图形颜色不全相同的概率为(  )
A. B.
C. D.
考点 古典概型的综合应用
题点 涂色问题
答案 A
解析 每一个图形有2种涂法,总的涂色种数为23=8,三个图形颜色完全相同的有2种(全是红或全是蓝),
则三个图形颜色不全相同的涂法种数为8-2=6.
∴三个图形颜色不全相同的概率为=.故选A.
11.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3,5,第三组有3个数为7,9,11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为(  )
A. B.
C. D.
答案 B
解析 由已知可得,前九组共有1+2+3+…+9=45(个)奇数,第十组共有10个奇数,分别是91,93,95,97,99,101,103,105,107,109这10个数字,其中恰为3的倍数的数有93,99,105共3个,故所求概率为P=.
12.甲、乙两位同学各拿出6张游戏牌,用作投骰子的奖品,两人商定:骰子朝上的面的点数为奇数时甲得1分,否则乙得1分,先积得3分者获胜得所有12张游戏牌,并结束游戏.比赛开始后,甲积2分,乙积1分,这时因意外事件中断游戏,以后他们不想再继续这场游戏,下面对这12张游戏牌的分配合理的是(  )
A.甲得9张,乙得3张 B.甲得6张,乙得6张
C.甲得8张,乙得4张 D.甲得10张,乙得2张
考点 古典概型计算公式
题点 古典概型概率公式的直接应用
答案 A
解析 由题意,得骰子朝上的面的点数为奇数的概率为,即甲、乙每局得分的概率相等,
所以甲获胜的概率是+×=,
乙获胜的概率是×=.
所以甲得到的游戏牌为12×=9(张),乙得到的游戏牌为12×=3(张),故选A.
二、填空题(本大题共4小题,每小题5分,共20分)
13.袋中有3只白球和a只黑球,从中任取1只,是白球的概率为,则a=________.
考点 古典概型计算公式
题点 古典概型概率公式的直接应用
答案 18
解析 ∵=,∴a=18.
14.甲、乙两名围棋选手在一次比赛中,甲胜的概率比乙胜的概率高0.05,和棋的概率为0.59,则乙胜的概率为________.
答案 0.18
解析 设乙胜的概率为P,则甲胜的概率为P+0.05,和棋的概率为0.59,所以P+P+0.05+0.59=1,
故P=0.18.
15.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________.
考点 古典概型计算公式
题点 古典概型概率公式的直接应用
答案 
解析 第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为.
16.在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点出现”,则事件A∪发生的概率为________.( 表示B的对立事件)
考点 概率的几个基本性质
题点 互斥事件的概率
答案 
解析 事件A包含的基本事件为“出现2点”或“出现4点”;表示“大于等于5的点出现”,包含的基本事件为“出现5点”或“出现6点”.显然A与是互斥的,故P(A∪)=P(A)+P()=+=.
三、解答题(本大题共6小题,共70分)
17.(10分)已知关于x的一次函数y=mx+n.
设集合P={-2,-1,1,2,3}和Q={-2,3},分别从集合P和Q中随机取一个数作为m和n,求函数y=mx+n是增函数的概率;
解 抽取的全部结果的基本事件有:
(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共10个,设“使函数为增函数的事件”为A,则A包含的基本事件有:(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共6个,
所以P(A)==.
18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表(单位:人 ):
参加书法社团
未参加书法社团
参加演讲社团
8
5
未参加演讲社团
2
30
(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
解 (1)记“该同学至少参加上述一个社团”为事件A,
则P(A)==.
所以该同学至少参加上述一个社团的概率为.
(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有:(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3),共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3),共2个,所以A1被选中且B1未被选中的概率P=.
19.(12分)现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
解 (1)从8人中选出通晓日语、俄语和韩语的志愿者各1名,其一切可能的结果组成的基本事件为(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),共18个基本事件,这些基本事件的发生是等可能的.
用M表示“A1被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,
因而P(M)==.
(2)用N表示“B1,C1不全被选中”这一事件,则其对立事件表示“B1,C1全被选中”这一事件,由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件由3个基本事件组成,所以P()==,所以由对立事件的概率公式,得P(N)=1-P()=1-=.
20.(12分)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如下表:
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分为:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
考点 概率与统计问题的综合题型
题点 概率与随机抽样的综合
解 (1)设该厂这个月共生产轿车n辆,
由题意得=,所以n=2 000.
则z=2 000-(100+300)-(150+450)-600=400.
(2)设所抽样本中有a辆舒适型轿车,
由题意得=,即a=2.
因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.
用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,
则基本事件空间包含的基本事件为:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个.事件E包含的基本事件为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个.
故P(E)=,即所求概率为.
(3)样本平均数=×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.
设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D包含的基本事件为:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D)==,即所求概率为.
21.(12分)M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩(单位:分)如茎叶图所示,公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.
(1)求男生成绩的中位数及女生成绩的平均数;
(2)如果用分层抽样的方法从“甲部门”和“乙部门”中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”的概率是多少?
考点 概率与统计问题的综合题型
题点 概率与茎叶图的综合
解 (1)男生共有14人,中间两个成绩是175和176,因此男生成绩的中位数是175.5.
女生成绩的平均数==181.
(2)用分层抽样的方法从“甲部门”和“乙部门”20人中抽取5人,每个人被抽中的概率是=.
根据茎叶图,“甲部门”有8人,“乙部门”有12人.
所以选中的“甲部门”的有8×=2(人),“乙部门”的有12×=3(人).
记选中的“甲部门”的为A1,A2,选中的“乙部门”的为B,C,D.从这5人中选2人的所有可能情况为
(A1,A2),(A1,B),(A1,C),(A1,D),(A2,B),(A2,C),(A2,D),(B,C),(B,D),(C,D),共10种.
其中至少有一人是“甲部门”的结果有7种.
因此,至少有一人是“甲部门”的概率是.
22.(12分)交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为T,其范围为[0,10],分别有五个级别:T∈[0,2),畅通;T∈[2,4),基本畅通;T∈[4,6),轻度拥堵;T∈[6,8),中度拥堵;T∈[8,10],严重拥堵.在晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.
考点 概率与统计问题的综合题型
题点 概率与频率分布直方图的综合
解 (1)由频率分布直方图得,这20个交通路段中,
轻度拥堵的路段有(0.1+0.2)×1×20=6(个),
中度拥堵的路段有(0.25+0.2)×1×20=9(个),
严重拥堵的路段有(0.1+0.05)×1×20=3(个).
(2)由(1)知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别路段的个数分别为×6=2,×9=3,×3=1,即从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1.
(3)记抽取的2个轻度拥堵路段为A1,A2,抽取的3个中度拥堵路段为B1,B2,B3,抽取的1个严重拥堵路段为C1,则从这6个路段中抽取2个路段的所有可能情况为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1),共15种,其中至少有1个路段为轻度拥堵的情况为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),共9种.
所以所抽取的2个路段中至少有1个路段为轻度拥堵的概率为=.