名称 | 第二章推理与证明学案+滚动训练+章末检测 | | |
格式 | zip | ||
文件大小 | 3.5MB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2019-05-21 22:42:11 |
数轴上表示①②的图形无公共部分,故假设不成立,从而关于x的方程x2-2x+5-p2=0无实数根.
四、探究与拓展
14.已知△ABC的三边a,b,c的倒数成等差数列,试分别用综合法和分析法证明B为锐角.
考点 分析法和综合法的综合应用
题点 分析法和综合法的综合应用
证明 分析法:
要证明B为锐角,B为三角形的内角,
则只需证cos B>0.
又cos B=,只需证a2+c2-b2>0.
即证a2+c2>b2.
又a2+c2≥2ac,只需证2ac>b2.
由已知=+,即2ac=b(a+c),
只需证b(a+c)>b2,即证a+c>b成立,在△ABC中,最后一个不等式显然成立.
所以B为锐角.
综合法:
由题意得=+=,
则b=,b(a+c)=2ac>b2(因为a+c>b).
因为cos B=≥>0,
又0所以015.设数列{an}的前n项和为Sn,满足Sn=2nan+1-3n2-4n,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)猜想数列{an}的通项公式.并用数学归纳法证明.
考点 数学归纳法证明数列问题
题点 利用数学归纳法证明数列通项问题
解 (1)由题意知S2=4a3-20,
∴S3=S2+a3=5a3-20.
又S3=15,∴a3=7,S2=4a3-20=8.
又S2=S1+a2=(2a2-7)+a2=3a2-7,
∴a2=5,a1=S1=2a2-7=3.
综上可知,a1=3,a2=5,a3=7.
(2)由(1)猜想an=2n+1,下面用数学归纳法证明.
①当n=1时,猜想显然成立;
②假设当n=k(k≥1,k∈N*)时,猜想成立,即ak=2k+1,
当n=k+1时,
Sk=3+5+7+…+(2k+1)=
=k(k+2).
又Sk=2kak+1-3k2-4k,
∴k(k+2)=2kak+1-3k2-4k,
解得2ak+1=4k+6,
∴ak+1=2(k+1)+1,即当n=k+1时,猜想成立.
由①②知,?n∈N*,an=2n+1.
章末复习
学习目标 1.整合本章知识要点.2.进一步理解合情推理与演绎推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题.
1.合情推理
(1)归纳推理:由部分到整体、由个别到一般的推理.
(2)类比推理:由特殊到特殊的推理.
(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.
2.演绎推理
(1)演绎推理:由一般到特殊的推理.
(2)“三段论”是演绎推理的一般模式,包括:
①大前提——已知的一般原理;
②小前提——所研究的特殊情况;
③结论——根据一般原理,对特殊情况做出的判断.
3.直接证明和间接证明
(1)直接证明的两类基本方法是综合法和分析法:
①综合法是从已知条件推出结论的证明方法;
②分析法是从结论追溯到条件的证明方法.
(2)间接证明的一种方法是反证法,是从结论反面成立出发,推出矛盾的方法.
4.数学归纳法
数学归纳法主要用于解决与正整数有关的数学命题.证明时,它的两个步骤缺一不可,它的第一步(归纳奠基)是证当n=n0时结论成立;第二步(归纳递推)是假设当n=k时结论成立,推得当n=k+1时结论也成立.
1.归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × )
2.“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )
3.综合法是直接证明,分析法是间接证明.( × )
4.反证法是指将结论和条件同时否定,推出矛盾.( × )
类型一 合情推理与演绎推理
例1 (1)观察下列等式:
-2+-2=×1×2;
-2+-2+-2+-2
=×2×3;
-2+-2+-2+…+-2=×3×4;
-2+-2+-2+…+-2=×4×5;
……
照此规律,
-2+-2+-2+…+-2=________.
考点 归纳推理的应用
题点 归纳推理在数对(组)中的应用
答案 n(n+1)
解析 第一个等式中1=,2=;
第二个等式中,2=,3=;
第三个等式中,3=,4=.
由此可推得第n个等式等于××=n(n+1).
(2)根据图(1)的面积关系:=·,可猜想图(2)有体积关系:=________.
考点 类此推理的应用
题点 平面几何与立体几何之间的类比
答案 ··
解析 题干两图中,与△PAB,△PA′B′相对应的是三棱锥P-ABC,P-A′B′C′;与△PA′B′两边PA′,PB′相对应的是三棱锥P-A′B′C′的三条侧棱PA′,PB′,PC′.与△PAB的两条边PA,PB相对应的是三棱锥P-ABC的三条侧棱PA,PB,PC.由此,类比题图(1)的面积关系,得到题图(2)的体积关系为=··.
(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
考点 演绎推理的综合应用
题点 演绎推理在其他方面的应用
答案 1和3
解析 由题意可知丙不拿2和3.
若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意;
若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意.
故甲的卡片上的数字是1和3.
反思与感悟 (1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.
(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.
(3)演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提及推理正确,结论必然正确.
跟踪训练1 (1)如图是由火柴棒拼成的图形,第n个图形由n个正方形组成.
通过观察可以发现:第4个图形中有________根火柴棒;第n个图形中有________根火柴棒.
考点 归纳推理的应用
题点 归纳推理在图形中的应用
答案 13 3n+1
解析 设第n个图形中火柴棒的根数为an,可知a4=13.
通过观察得到递推关系式an-an-1=3(n≥2,n∈N*),
所以an=3n+1.
(2)若数列{an}为等差数列,Sn为其前n项和,则有性质“若Sm=Sn(m,n∈N*且m≠n),则Sm+n=0.”类比上述性质,相应地,当数列{bn}为等比数列时,写出一个正确的性质:________________.
考点 类比推理的应用
题点 等差数列与等比数列之间的类比
答案 数列{bn}为等比数列,Tm表示其前m项的积,若Tm=Tn(m,n∈N*,m≠n),则Tm+n=1
解析 由等差数列的运算性质类比推理到等比数列的运算性质时,
加减运算类比推理为乘除运算.
累加类比为累乘,
由此,等差数列{an}的性质类比到等比数列{bn}中为:
数列{bn}为等比数列,Tm表示其前m项的积,
若Tm=Tn(m,n∈N*,m≠n),
则Tm+n=1.
类型二 综合法与分析法
例2 试用分析法和综合法分别推证下列命题:已知α∈(0,π),求证:2sin 2α≤.
考点 分析法和综合法的综合应用
题点 分析法和综合法的综合应用
证明 方法一 分析法
要证2sin 2α≤成立,
只需证4sin αcos α≤,
∵α∈(0,π),∴sin α>0,
只需证4cos α≤,
∵1-cos α>0,
∴4cos α(1-cos α)≤1,
可变形为4cos2α-4cos α+1≥0,
只需证(2cos α-1)2≥0,显然成立.
方法二 综合法
∵+4(1-cos α)≥4,
当且仅当cos α=,即α=时取等号,
∴4cos α≤.
∵α∈(0,π),∴sin α>0,
∴4sin αcos α≤,
∴2sin 2α≤.
反思与感悟 分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条件清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.
跟踪训练2 设a,b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.
考点 分析法及应用
题点 分析法解决不等式问题
证明 要证a3+b3>a2b+ab2成立,即需证
(a+b)(a2-ab+b2)>ab(a+b)成立,
即需证a2-ab+b2>ab成立.
只需证a2-2ab+b2>0成立,
即需证(a-b)2>0成立.
而由已知条件可知,a≠b,所以a-b≠0,
所以(a-b)2>0显然成立.
即a3+b3>a2b+ab2.
类型三 反证法
例3 若x,y都是正实数,且x+y>2,求证:<2与<2中至少有一个成立.
考点 反证法及应用
题点 反证法的应用
证明 假设<2和<2都不成立,
则有≥2和≥2同时成立.
因为x>0且y>0,
所以1+x≥2y且1+y≥2x,
两式相加,得2+x+y≥2x+2y,所以x+y≤2.
这与已知x+y>2矛盾.
故<2与<2中至少有一个成立.
反思与感悟 反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题时,也常用反证法.
跟踪训练3 已知:ac≥2(b+d).
求证:方程x2+ax+b=0与方程x2+cx+d=0中至少有一个方程有实数根.
考点 反证法及应用
题点 反证法的应用
证明 假设两方程都没有实数根,
则Δ1=a2-4b<0与Δ2=c2-4d<0,有a2+c2<4(b+d),而a2+c2≥2ac,从而有4(b+d)>2ac,即ac<2(b+d),与已知矛盾,故原命题成立.
类型四 数学归纳法
例4 已知在数列{an}中,a1=-,其前n项和Sn满足an=Sn++2(n≥2),计算S1,S2,S3,S4,猜想Sn的表达式,并用数学归纳法加以证明.
考点 数学归纳法证明数列问题
题点 数学归纳法证明数列通项问题
解 当n≥2时,an=Sn-Sn-1=Sn++2.
∴Sn=-(n≥2).
则有S1=a1=-,
S2=-=-,
S3=-=-,
S4=-=-,
由此猜想:Sn=-(n∈N*).
下面用数学归纳法证明:
(1)当n=1时,S1=-=a1,猜想成立.
(2)假设当n=k(k≥1,k∈N*)时猜想成立,
即Sk=-成立,
那么当n=k+1时,
Sk+1=-=-
=-=-.
即当n=k+1时猜想成立.
由(1)(2)可知,对任意正整数n,猜想均成立.
反思与感悟 (1)用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始n0是多少.
(2)由n=k到n=k+1时,除等式两边变化的项外还要利用当n=k时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.
跟踪训练4 观察下列四个等式:
第一个式子 1=1
第二个式子 2+3+4=9
第三个式子 3+4+5+6+7=25
第四个式子 4+5+6+7+8+9+10=49
(1)按照此规律,写出第五个等式;
(2)请你做出一般性的猜想,并用数学归纳法证明.
考点 利用数学归纳法证明等式
题点 等式中的归纳、猜想、证明
解 (1)第5个等式:5+6+7+…+13=81.
(2)猜想第n个等式为
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
下面用数学归纳法证明.
①当n=1时,左边=1,右边=(2-1)2=1,
猜想成立.
②假设当n=k(k≥1,k∈N*)时,猜想成立,
即有k+(k+1)+(k+2)+…+(3k-2)=(2k-1)2.
那么当n=k+1时,
左边=(k+1)+(k+2)+…+(3k-2)+(3k-1)+3k+(3k+1)
=k+(k+1)+(k+2)+…+(3k-2)+(2k-1)+3k+(3k+1)
=(2k-1)2+(2k-1)+3k+(3k+1)
=4k2-4k+1+8k=(2k+1)2
=[2(k+1)-1]2.
右边=[2(k+1)-1]2,
即当n=k+1时,猜想也成立.
根据①②知,猜想对任意n∈N*都成立.
1.数列5,9,17,33,x,…中的x等于( )
A.47 B.65
C.63 D.128
考点 归纳推理的应用
题点 归纳推理在数对(组)中的应用
答案 B
解析 5=22+1,9=23+1,17=24+1,33=25+1,
归纳可得:x=26+1=65.
2.在平面直角坐标系中,方程+=1表示x,y轴上的截距分别为a,b的直线,类比到空间直角坐标系中,在x,y,z轴上截距分别为a,b,c(abc≠0)的平面方程为( )
A.++=1 B.++=1
C.++=1 D.ax+by+cz=1
考点 类比推理的应用
题点 平面几何与立体几何之间的类比
答案 A
解析 ∵在平面直角坐标系中,方程+=1表示的图形是一条直线,具有特定性质:“在x轴,y轴上的截距分别为a,b”.类比到空间直角坐标系中,在x,y,z轴上截距分别为a,b,c(abc≠0)的平面方程为++=1.故选A.
3.若a>0,b>0,则有( )
A.>2b-a B.<2b-a
C.≥2b-a D.≤2b-a
考点 综合法及应用
题点 利用综合法解决不等式问题
答案 C
解析 因为-(2b-a)==≥0,所以≥2b-a.
4.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实数
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
考点 反证法及应用
题点 如何正确进行反设
答案 A
解析 方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故选A.
5.用数学归纳法证明:
+++…+=(n∈N*).
考点 用数学归纳法证明等式
题点 利用数学归纳法证明等式
解 (1)当n=1时,左边==,
右边==.
左边=右边,所以等式成立.
(2)假设当n=k(k≥1,k∈N*)时等式成立,
即有+++…+=,
则当n=k+1时,
+++…++
=+
==
==.
所以当n=k+1时,等式也成立,
由(1)(2)可知,对于一切n∈N*,等式都成立.
1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.
2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.
3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.
4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)当n=n0时,结论成立.第二步(归纳递推)假设当n=k时,结论成立,推得当n=k+1时,结论也成立.数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立.
一、选择题
1.证明命题:“f(x)=ex+在(0,+∞)上是增函数”.现给出的证法如下:因为f(x)=ex+,所以f′(x)=ex-.因为x>0,所以ex>1,0<<1.所以ex->0,即f′(x)>0.所以f(x)在(0,+∞)上是增函数,使用的证明方法是( )
A.综合法 B.分析法
C.反证法 D.以上都不是
考点 综合法及应用
题点 利用综合法解决函数问题
答案 A
解析 这是从已知条件出发利用已知的定理证得结论的,是综合法,故选A.
2.若aA.<
B.a+>b+
C.b+>a+
D.<
考点 分析法及应用
题点 分析法解决不等式问题
答案 C
解析 取a=-2,b=-1,验证可知C正确.
3.我们把1,4,9,16,25,…这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是( )
A.n(n-1) B.n(n+1)
C.(n+1)2 D.n2
考点 归纳推理的应用
题点 归纳推理在图形中的应用
答案 D
解析 由题意可知第n个正方形点数为n2.
4.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( )
A.25 B.7
C.6 D.8
考点 归纳推理的应用
题点 归纳推理在数对(组)中的应用
答案 B
解析 由所给的数列规律知,第25项为7.
5.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为( )
A.a1a2a3…a9=29 B.a1+a2+…+a9=29
C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9
考点 类比推理的应用
题点 等差数列与等比数列之间的类比
答案 D
解析 由等差数列的性质a1+a9=a2+a8=…=2a5可知D正确.
6.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取( )
A.2 B.3
C.5 D.6
考点 数学归纳法定义及原理
题点 数学归纳法第一步:归纳奠基
答案 C
解析 当n取1,2,3,4时,2n>n2+1不成立,当n=5时,25=32>52+1=26,即第一个能使2n>n2+1成立的n值为5,故选C.
7.已知a+b+c=0,则ab+bc+ca的值( )
A.大于0 B.小于0
C.不小于0 D.不大于0
考点 综合法及应用
题点 综合法的应用
答案 D
解析 因为(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,
又因为a2+b2+c2≥0,
所以2(ab+bc+ca)≤0,即ab+bc+ca≤0.
8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,下表为10名学生的预赛成绩,其中有三个数据模糊.
学生序号
1
2
3
4
5
6
7
8
9
10
立定跳远(单位:米)
1.96
1.92
1.82
1.80
1.78
1.76
1.74
1.72
1.68
1.60
30秒跳绳(单位:次)
63
a
75
60
63
72
70
a-1
b
65
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )
A.2号学生进入30秒跳绳决赛
B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛
D.9号学生进入30秒跳绳决赛
考点 演绎推理的综合应用
题点 演绎推理在其他方面的应用
答案 B
解析 进入立定跳远决赛的有8人,根据成绩应是1号至8号.
若a>63,则同时进入两决赛的不是6人,不符合题意;
若61≤a≤63,则同时进入两决赛的有1,2,3,5,6,7号,符合题意;
若a=60,则同时进入两决赛的不是6人,不符合题意;
若a≤59,则同时进入两决赛的有1,3,4,5,6,7号,符合题意.
综上可知,5号进入30秒跳绳决赛.
二、填空题
9.已知正三角形内切圆的半径是高的,把这个结论推广到空间正四面体,类似的结论是____________________.
考点 类比推理的应用
题点 平面几何与立体几何之间的类比
答案 正四面体的内切球的半径是高的
解析 原问题的解法为等面积法,即正三角形的面积S=ah1=3×ar?r=h1(其中a是正三角形的边长,h1是高,r是内切圆半径).
类比,用等体积法,V=Sh2=4×R·S?R=h2(其中S为底面正三角形的面积,h2是高,R是内切球的半径).
10.已知=2,=3,=4,…,=6,a,b均为正实数,由以上规律可推测出a,b的值,则a+b=________.
考点 归纳推理的应用
题点 归纳推理在数对(组)中的应用
答案 41
解析 由题意归纳推理得=6,b=62-1=35,a=6.
∴a+b=6+35=41.
11.完成反证法证题的全过程.
题目:设a1,a2,…,a7是由数字1,2,…,7任意排成的一个数列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则________均为奇数.①
因为7个奇数之和为奇数,故有
(a1-1)+(a2-2)+…+(a7-7)为________.②
而(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=________.③
②与③矛盾,故p为偶数.
考点 反证法及应用
题点 反证法的应用
答案 a1-1,a2-2,…,a7-7 奇数 0
解析 由假设p为奇数可知,(a1-1),(a2-2),…,(a7-7)均为奇数,故(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾.
三、解答题
12.用综合法或分析法证明:
(1)如果a,b>0,则lg≥;
(2)6+>2+2.
考点 分析法和综合法的综合应用
题点 分析法和综合法的综合应用
证明 (1)当a,b>0时,有≥,
∴lg≥lg,
∴lg≥lg(ab)=.
(2)要证+>2+2,
只需证(+)2>(2+2)2,
即2>2,这是显然成立的,
∴原不等式成立.
13.求证:不论x,y取何非零实数,等式+=总不成立.
考点 反证法及应用
题点 反证法的应用
证明 假设存在非零实数x,y使得等式+=成立.
于是有y(x+y)+x(x+y)=xy,
即x2+y2+xy=0,
即2+y2=0.
由y≠0,得y2>0.
又2≥0,
所以2+y2>0.
与x2+y2+xy=0矛盾,故原命题成立.
四、探究与拓展
14.设S,V分别表示表面积和体积,如△ABC的面积用S△ABC表示,三棱锥O-ABC的体积用VO-ABC表示,对于命题:如果O是线段AB上一点,则||·+||·=0.将它类比到平面的情形时,应该有:若O是△ABC内一点,有S△OBC·+S△OCA·+S△OBA·=0.将它类比到空间的情形时,应该有:若O是三棱锥A-BCD内一点,则有__________.
考点 类比推理的应用
题点 平面几何与立体几何之间的类比
答案 VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=0
15.给出下列等式:
1=1,
1-4=-(1+2),
1-4+9=1+2+3,
1-4+9-16=-(1+2+3+4),
……
(1)写出第5个和第6个等式,并猜想第n(n∈N*)个等式;
(2)用数学归纳法证明你猜想的等式.
考点 利用数学归纳法证明等式
题点 等式中的归纳、猜想、证明
(1)解 第5个等式为1-4+9-16+25=1+2+3+4+5,
第6个等式为1-4+9-16+25-36=-(1+2+3+4+5+6).
猜想第n个等式为12-22+32-42+…+(-1)n-1n2
=(-1)n-1·(1+2+3+…+n).
(2)证明 ①当n=1时,左边=12=1,右边=(-1)0×1=1,左边=右边,猜想成立.
②假设当n=k(k≥1,k∈N*)时,猜想成立,即12-22+32-42+…+(-1)k-1k2=(-1)k-1·,
则当n=k+1时,12-22+32-42+…+(-1)k-1k2+(-1)k(k+1)2=(-1)k-1·+(-1)k(k+1)2=(-1)k(k+1)·=(-1)k·,
故当n=k+1时,猜想也成立
由①②可知,对于任意n∈N*,猜想均成立.