课时教案【教师专用】 五年级数学下·新课标(人教)
第8单元 课时教案【教师专用】
第8单元 数学广角——找次品
第1课时 找次品(1)
【教学内容】
教材第111页例1,第112页例2、“做一做”,第113页练习二十七第1,2题及第114页“你知道吗?”。
【教学目标】
1.利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
2.以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识、应用意识和解决实际问题的能力。
3.感受数学在日常生活中的广泛应用。
【教学重点】
探究解决“找次品”问题的最优策略。
【教学难点】
用图示或文字表示找次品的过程。
【教学准备】
PPT课件,展台、天平、一些物品等。
教学过程 教师批注
一、创设情境,引入原理 1.PPT课件出示教材第111页例1。(学生理解题意) 2.在一些商品或产品中,把不符合标准要求的找出来,我们称之为“找次品”。(板书课题) 二、学习活动,探究新知 1.探究从3个物品中找次品的问题。 (1)怎么能从这3瓶中把次品找出来?(学生交流方法:数一数、掂一掂、称一称,分析方法是否可行。) (2)了解天平的特点:左右一样重就平衡。 (3)如果用天平,要称几次能找出那个次品?请同学们小组合作试验,并用画图或文字记录下试验过程。(小组活动,教师指导。) (4)组织学生汇报演示,展示记录方法。 2.探究从8个物品中找次品的问题。 (1)PPT课件出示例2,学生理解题意。 (2)“至少”“保证”是什么意思?(学生交流) (3)你猜一猜,至少称几次能保证找出次品?(学生汇报)
(4)学生分组探究实验,并将实验情况填入下表。(教师巡视指导) 每次每边放的个数分成的份数至少要称的次数
(5)组织学生汇报展示。 (6)组织学生交流。 ①分别请称4次、3次、2次的小组代表介绍本组的方法。 ②每次每边称1个为什么需要的次数最多?(每次称的数量太少) ③每次每边称4个为什么比每次每边称3个的次数要多?(每次每边称3个,称一次就可以将次品确定在更小的范围内。) ④有1次就能称出次品的方法吗? 3.概括最优化策略。 (1)如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?(学生小组讨论交流,全班汇报。) (2)你发现什么规律?(全班交流) 明确:将所有零件平均分成三部分,保证找到次品需要的次数最少。 (3)用你发现的规律找出10个,11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?(学生小组讨论交流,全班汇报。) 三、巩固练习 1.教材第112页“做一做”,学生小组交流,全班汇报。 2.教材第113页练习二十七第1题 ,学生独立完成,全班汇报。 3.教材第113页练习二十七第2题 ,学生同桌交流,全班汇报交流。 四、拓展延伸 学生自由阅读教材第114页“你知道吗?”,说说读后知道了什么,交流提出的两个问题。 五、课堂小结 今天研究了找次品的问题,找次品的最优化策略是什么?(学生汇报,每次尽量平均分成3份。) 六、布置作业 完成《全科王·同步课时练习》相关习题。
【板书设计】
找次品(1)
3个物品
8个物品
【教学反思】
[成功之处] 猜测与验证是学生开展数学活动的一种重要思想方法。因此小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索的欲望,促进学生创新能力的发展。本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少呢?为了验证这一猜想,就必须再用一个例子去试验,最后归纳得出结论。学生经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。
[不足之处] 学生对图示的方法应用得不好。
[再教设计] 把图示的方法讲解得再详细一些,尽可能让学生都会写图示。
第2课时 找次品(2)
【教学内容】
教材第113页练习二十七第3,4题及第114页第5,6题。
【教学目标】
1.通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
【教学重点】
运用数学思想、方法解决问题。
【教学难点】
运用数学思想、方法解决问题。
【教学准备】
PPT课件,展台、天平、一些物品等。
教学过程 教师批注
一、复习导入 1.PPT课件出示练习题。 (1)5个零件,其中有一个是次品(次品轻一些),用天平至少要几次能把次品找出来? (2)有9个物品,其中有一个比其他的稍重一点点,用天平怎样能把它找出来?至少需要称几次? (3)解决找次品问题的最优策略是什么? 学生独立思考,全班汇报。 2.这节课我们继续研究“找次品”的问题。(板书课题) 二、探究新知 1.教材第114页第6题。 (1)学生理解题意,说一说这道题与上节课学习的例1有什么不同?(学生读题、汇报) (2)请同学们以小组为单位,讨论交流,研究一下这个问题该如何解决。在不知道次品是轻一些还是重一些的情况下,怎样才能找出次品?(学生小组自主探究) (3)组织学生汇报演示,根据学生汇报板书过程。 (4)如果白糖有4袋、5袋,甚至更多,其中有一袋次品,不知是轻还是重,至少要用天平称几次能把它找出来?(学生小组交流后汇报) 明确:在不知次品是轻还是重的情况下,只需要比已知轻重的情况多称1次。 2.教材第113页练习二十七第3题。 (1)学生理解题意,说一说这道题的已知条件是什么,问题是什么。(学生读题、汇报) (2)你怎么理解“3年后爸爸比小明大24岁” ? (3)学生独立思考解答,全班交流,鼓励算法多样化。 三、巩固练习 1.教材第113页练习二十七第4题,学生独立思考,全班汇报。 2.教材第114页练习二十七第5题,学生独立完成,全班展示订正。 四、课堂小结 本节课我们进一步研究了“找次品”的问题,通过这节课的学习,你有什么新的收获或感受?(学生汇报:我知道了在不知道次品是轻还是重的时候,怎样把次品找出来……) 五、布置作业 完成《全科王·同步课时练习》相关习题。
【板书设计】
找次品(2)
【教学反思】
[成功之处] 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在上节课学习找次品的策略的基础上,展开本节课的教学,让学生动手动脑,探究在不知次品是轻一些还是重一些的情况下找出次品的方法,并以此题为起点,探索数量为4,5,…时如何找出次品,培养了学生迁移能力和类推能力。教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。
[不足之处] 学生对操作过程的语言叙述,有时不是很清晰。
[再教设计] 教师要注意叙述操作过程的条理性和严谨性,并指导学生有条理地描述操作过程。