课件18张PPT。用多种的正多边形拼地板 1. 在正三角形、正方形、正五边形、正六边形、正八边形中取一种,可以铺满地板的有哪些?模型:
正多边形个数×正多边形内角度数=360o 正三角形、正方形、正六边形围绕一点拼在一起的正多边形的内角之和为360o 2. 用同种正多边形瓷砖能不留空隙,不重叠地铺满地板的关键是什么?回顾一下上节课的拼图回答下列问题 从正三角形、正方形、正五边形、正六边形、正八边形、正十边形、正十二边形中任取两种进行组合是否能铺满地面呢?正方形、正三角形正六边形、正三角形正十二边形、正三角形正八边形、正方形正五边形、正十边形围绕一点能拼成360o,但能扩展到整个平面,即铺满地面吗?尽管能围绕一点拼成360o, 但不能扩展到整个平面.两种正多边形拼地板围绕 一点拼在一起的两种正多边形的
内角之和为360o.关键:模型:
正多边形1个数×正多边形1内角度数 +
正多边形2个数×正多边形2内角度数=360 o 从正三角形、正方形、正六边形、正八边形、正十边形、正十二边形中任取三种进行组合是否也能铺满地面呢?正六边形、正方形、正三角形正十二边形、正方形、正六边形正十二边形、正方形、正三角形 如果几个多边形的内角加在一起恰好能组成一个周角的话,它们就能够拼成一个平面图形. 有时几种正多边形的组合能围绕一点拼成周角,但不能扩展到整个平面,即不能铺满平面. 如:正五边形与正十边形的组合.注意: 观察下面这些瓷砖的图案,分别说出它们是由哪些图形构成,以及它们能铺满地面的理由?
用多种正多边形拼地板,除课本介绍的几种组合方法外,还有哪些不同的组合方法?2. 充分发挥你的聪明才智和丰富的想象力,
设计一个多姿多彩的地板图案. 再 见