3.3 量子论视野下的原子模型
[学习目标]1.知道玻尔原子理论的基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念,会计算原子跃迁时吸收或辐射光子的能量.3.能用玻尔原子理论简单解释氢原子光谱.
一、玻尔原子理论的基本假设
[导学探究] 1.按照经典理论,核外电子在库仑引力作用下绕原子核做圆周运动.我们知道,库仑引力和万有引力形式上有相似之处,电子绕原子核的运动与卫星绕地球的运动也一定有某些相似之处,那么若将卫星—地球模型缩小是否就可以变为电子—原子核模型呢?
答案 不可以.在玻尔理论中,电子的轨道半径只可能是某些分立的数值,而卫星的轨道半径理论上可按需要任意取值.
2.氢原子吸收或辐射光子的频率条件是什么?它和氢原子核外的电子的跃迁有什么关系?
答案 电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(其能量记为En)时,会放出能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=Em-En(m>n).
当电子从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由上式决定.
[知识梳理]
1.轨道量子化
(1)轨道半径只能够是某些分立的数值.
(2)氢原子的电子最小轨道半径r1=0.053nm,轨道半径满足rn=n2r1,n为量子数,n=1,2,3,….
2.能级
(1)能级:在玻尔模型中,原子的能量状态是不连续的,因而各定态的能量只能取一些分立值,我们把原子在各定态的能量值叫做原子的能级.
(2)基态和激发态
①基态:在正常状态下,原子处于能量最低的状态,这时电子在离核最近的轨道上运动,这一定态叫做基态.
②激发态:电子在其他轨道上运动时的定态叫做激发态.
(3)能量量子化
不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.
原子各能级:En=E1(E1=-13.6eV,n=1,2,3,…)
3.光子的发射和吸收
(1)光子的发射:原子从高能级(Em)向低能级(En)跃迁时会发射光子,放出光子的能量hν与始末两能级Em、En之间的关系为:hν=Em-En.
(2)光子的吸收:原子吸收光子后可以从低能级跃迁到高能级.
高能级Em低能级En
[即学即用] 判断下列说法的正误.
(1)玻尔认为电子运行轨道半径是任意的,就像人造地球卫星,能量大一些,轨道半径就会大点.( × )
(2)玻尔认为原子的能量是量子化的,不能连续取值.( √ )
(3)当电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出任意能量的光子.
( × )
(4)处于能级越高的氢原子,向低能级跃迁时释放的光子能量越大.( × )
二、原子的能级跃迁问题
[导学探究] 根据氢原子的能级图,说明:
1.氢原子从高能级向低能级跃迁时,发出的光子的频率如何计算?
答案 氢原子辐射光子的能量决定于两个能级差hν=Em-En(n2.如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时最多能辐射出多少种频率不同的光子?
图1
答案 氢原子能级跃迁图如图所示.从图中可以看出最多能辐射出6种频率不同的光子,它们分别是n=4→n=3,n=4→n=2,n=4→n=1,n=3→n=2,n=3→n=1,n=2→n=1.
[知识梳理]
1.氢原子能级图(如图2所示)
图2
2.各种物质的原子结构不同,能级分布也就各不相同,它们可以发射的光的频率也不相同,每种元素的原子发出的光都有自己的特征,因而有自己的原子光谱.
3.由于原子的能级是不连续的,所以辐射的光子的能量也是不连续的.从光谱上看,原子辐射光波的频率只有若干分立的值.
[即学即用] 判断下列说法的正误.
(1)玻尔理论能很好地解释氢原子的光谱.( √ )
(2)处于基态的原子是不稳定的,会自发地向其他能级跃迁,放出光子.( × )
(3)不同的原子具有相同的能级,原子跃迁时辐射的光子频率是相同的.( × )
三、玻尔理论的局限性
[导学探究] 玻尔理论的成功之处在哪儿?为什么说它又有局限性?
答案 (1)玻尔理论成功之处在于第一次将量子化的思想引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱.
(2)它的局限性在于过多的保留了经典粒子的观念.
[知识梳理]
1.玻尔理论的成就
玻尔理论第一次将量子观念引入原子领域;提出了能级和跃迁的概念,成功解释了氢原子光谱的实验规律.
2.玻尔理论的局限性
没有彻底摆脱经典物理学的束缚,对比较复杂的原子光谱无法解释.
3.电子云
原子中电子的运动并没有确定的轨道,而是可以出现在原子内的整个核外空间,只是在不同的地方出现的概率不同.如果用疏密不同的点表示电子在各处出现的概率,画出图来,就像云雾一样,人们把它叫做电子云.
[即学即用] 判断下列说法的正误.
(1)玻尔第一次提出了量子化的观念.( × )
(2)玻尔的原子理论模型很好地解释了氦原子的光谱现象.( × )
(3)电子的实际运动并不是具有确定坐标的质点的轨道运动.( √ )
一、对玻尔原子模型的理解
例1 (多选)玻尔在他提出的原子模型中所作的假设有( )
A.原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量
B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的
C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子
D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率
答案 ABC
解析 A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核运动的频率无关.
例2 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大
答案 D
解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k=m,又Ek=mv2,所以Ek=.由此式可知:电子离核越远,即r越大时,电子的动能越小,故A、C错;由r变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D对.
针对训练1 (多选)按照玻尔原子理论,下列表述正确的是( )
A.核外电子运动轨道半径可取任意值
B.氢原子中的电子离原子核越远,氢原子的能量越大
C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=Em-En(m>n)
D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量
答案 BC
解析 根据玻尔理论,核外电子运动的轨道半径是一些确定的值,而不是任意值,A错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.
原子的能量及变化规律
1.原子的能量:En=Ekn+Epn.
2.电子绕氢原子核运动时:k=m,
故Ekn=mvn2=,而Epn=-k,两者之和即为轨道能量E=Ekn+Epn=-k,所以氢原子的定态能量为负,基态的半径为r1=0.053nm,E1=-13.6eV是其定态能量的最低值.
3.当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.
4.电子的轨道半径增大时,说明原子吸收了光子,从能量较低的轨道跃迁到了能量较高的轨道上.即电子轨道半径越大,原子的能量越大.
二、氢原子的跃迁规律分析
1.对能级图的理解
由En=知,量子数越大,能级差越小,能级横线间的距离越小.n=1是原子的基态,n→∞是原子电离时对应的状态.
2.跃迁过程中吸收或辐射光子的频率和波长满足hν=|Em-En|,h=|Em-En|.
3.大量处于n激发态的氢原子向基态跃迁时,最多可辐射种不同频率的光,一个处于n激发态的氢原子向基态跃迁时,最多可辐射(n-1)种频率的光子.
例3 (多选)氢原子能级图如图3所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm.以下判断正确的是( )
图3
A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nm
B.用波长为325nm的光照射,可使氢原子从n=1跃迁到n=2的能级
C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线
D.用波长为633nm的光照射,不能使氢原子从n=2跃迁到n=3的能级
答案 CD
解析 能级间跃迁辐射(吸收)的光子能量等于两能级间的能级差,能级差越大,辐射(吸收)的光子频率越大,波长越小,A错误;由Em-En=hν可知,B错误,D正确;根据C=3可知,C正确.
针对训练2 如图4所示为氢原子的能级图.用光子能量为13.06eV的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波长的光有( )
图4
A.15种B.10种C.4种D.1种
答案 B
解析 基态的氢原子的能级值为-13.6eV,吸收13.06eV的能量后变成-0.54eV,原子跃迁到n=5能级,由于氢原子是大量的,故辐射的光子种类是=种=10种.
原子跃迁时需要注意的两个问题:
(1)注意一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.
(2)注意跃迁与电离:hν=Em-En只适用于光子和原子作用使原子在各定态之间跃迁的情况,对于光子和原子作用使原子电离的情况,则不受此条件的限制.如基态氢原子的电离能为13.6eV,只要大于或等于13.6eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大.
1.(对玻尔理论的理解)(多选)关于玻尔原子理论的基本假设,下列说法中正确的是( )
A.原子中的电子绕原子核做圆周运动,库仑力提供向心力
B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的
C.原子的能量包括电子的动能和势能,电子动能可取任意值,势能只能取某些分立值
D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子频率等于电子绕核运动的频率
答案 AB
2.(氢原子跃迁规律的应用)(多选)如图5所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是( )
图5
A.能量和频率最大、波长最短的是B光子
B.能量和频率最小、波长最长的是C光子
C.频率关系为νB>νA>νC
D.波长关系为λB>λA>λC
答案 ABC
解析 从题图中可以看出电子在三种不同能级之间跃迁时,能级差由大到小依次是B、A、C,所以B光子的能量和频率最大,波长最短,能量和频率最小、波长最长的是C光子,所以频率关系是νB>νA>νC,波长关系是λB<λA<λC,故选项A、B、C正确,D错误.
3.(氢原子跃迁规律的应用)氢原子处于基态时,原子能量E1=-13.6eV,氢原子各能级的关系为En=E1(n=1,2,3…),普朗克常量取h=6.6×10-34J·s.
(1)处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?
(2)今有一群处于n=4激发态的氢原子,最多可以辐射几种不同频率的光?其中最小的频率是多少?(结果保留2位有效数字)
答案 (1)3.4eV
(2)6种 1.6×1014Hz
解析 (1)E2=E1=-3.4eV
则处于n=2激发态的氢原子,至少要吸收3.4eV能量的光子才能电离.
(2)根据C=6知,一群处于n=4激发态的氢原子最多能辐射出的光子种类为6种.
由n=4跃迁到n=3能级时,辐射出的光子频率最小,设为νmin,则E4-E3=hνmin,
代入数据解得νmin=1.6×1014Hz.
一、选择题
考点一 对玻尔原子模型的理解
1.根据玻尔理论,关于氢原子的能量,下列说法中正确的是( )
A.是一系列不连续的任意值
B.是一系列不连续的特定值
C.可以取任意值
D.可以在某一范围内取任意值
答案 B
2.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是( )
A.电子绕核旋转的轨道半径增大
B.电子的动能减少
C.氢原子的电势能增大
D.氢原子的能级减小
答案 D
解析 氢原子辐射出一个光子后,由高能级跃迁到低能级,轨道半径减小,电子动能增大,此过程中库仑力做正功,电势能减小.
3.(多选)由玻尔理论可知,下列说法中正确的是( )
A.电子绕核运动有加速度,就要向外辐射电磁波
B.处于定态的原子,其电子做变速运动,但它并不向外辐射能量
C.原子内电子的可能轨道是不连续的
D.原子发生跃迁时,辐射或吸收光子的能量等于两能级间的能量差
答案 BCD
解析 按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,与玻尔理论相矛盾,故A错.B、C、D是玻尔理论的假设,都正确.
考点二 氢原子跃迁规律的应用
4.如图1所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长的光.选项图所示的该原子光谱中,谱线从左向右的波长依次增大,则正确的是( )
图1
答案 C
解析 由能级图可知,三种光的能量大小依次为Ea>Ec>Eb,又E=h,可知b光的能量最小,波长最长,a光的能量最大,波长最短,C项正确.
5.氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,已知普朗克常量为h,若氢原子从能级k跃迁到能级m,则( )
A.吸收光子的能量为hν1+hν2
B.辐射光子的能量为hν1+hν2
C.吸收光子的能量为hν2-hν1
D.辐射光子的能量为hν2-hν1
答案 D
解析 由于氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,可知能级k最高、n最低,所以氢原子从能级k跃迁到能级m,要辐射光子的能量为hν2-hν1,选项D正确,A、B、C错误.
6.氢原子部分能级的示意图如图2所示,不同色光的光子能量如下表所示:
图2
色光
红
橙
黄
绿
蓝—靛
紫
光子能量范围(eV)
1.61~2.00
1.61~2.07
1.61~2.14
1.61~2.53
1.61~2.76
1.61~3.10
处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为( )
A.红、蓝—靛 B.黄、绿
C.红、紫 D.蓝—靛、紫
答案 A
解析 根据玻尔理论,如果激发态的氢原子处于n=2能级,只能够发出10.2eV的光子,不属于可见光范围;如果激发态的氢原子处于n=3能级,能够发出12.09eV、10.2eV、1.89eV的三种光子,只有1.89eV的光子属于可见光;如果激发态的氢原子处于n=4能级,能够发出12.75eV、12.09eV、10.2eV、2.55eV、1.89eV、0.66eV的六种光子,1.89eV和2.55eV的光子属于可见光,1.89eV的光子为红光,2.55eV的光子为蓝-靛光,所以选项A正确.
7.(多选)如图3为玻尔为解释氢原子光谱画出的氢原子能级示意图,一群氢原子处于n=4的激发态,当它们自发地跃迁到较低能级时,以下说法符合玻尔理论的有( )
图3
A.电子轨道半径减小,动能增大
B.氢原子跃迁时,可发出连续不断的光谱线
C.由n=4跃迁到n=1时发出光子的频率最小
D.金属钾的逸出功为2.25eV,能使金属钾发生光电效应的光谱线有4条
答案 AD
解析 当原子从第4能级向低能级跃迁时,原子的能量减小,电子的轨道半径减小,动能增大,电势能减小,故A正确;能级间跃迁辐射或吸收的光子能量必须等于两能级间的能级差,氢原子跃迁时,可发出不连续的光谱线,故B错误;由n=4跃迁到n=1时辐射的光子能量最大,发出光子的频率最大,故C错误;n=4能级的氢原子可以放出6条光谱线,其放出的光子能量分别为:E1=[-0.85-(-1.51)] eV=0.66 eV;E2=[-0.85-(-3.4)] eV=2.55 eV、E3=[-0.85-(-13.6)] eV=12.75 eV、E4=[-1.51-(-3.4)] eV=1.89 eV、E5=[-1.51-(-13.6)] eV=12.09 eV、E6=[-3.4-(-13.6)] eV=10.20 eV,故大于2.25 eV的光谱线有4条,故D正确.
8.(多选)已知氢原子的能级图如图4所示,现用光子能量介于10~12.9eV范围内的光去照射一群处于基态的氢原子,则下列说法中正确的是( )
图4
A.在照射光中可能被吸收的光子能量有无数种
B.在照射光中可能被吸收的光子能量只有3种
C.照射后可能观测到氢原子发射不同波长的光有6种
D.照射后可能观测到氢原子发射不同波长的光有3种
答案 BC
解析 根据跃迁规律hν=Em-En和能级图,可知A错,B对;氢原子吸收光子后能跃迁到最高为n=4的能级,能发射的光子的波长有C=6种,故C对,D错.
9.(多选)如图5所示为氢原子的能级图.用光子能量为13.06eV的光照射一群处于基态的氢原子,下列说法正确的是( )
图5
A.氢原子可以辐射出连续的各种波长的光
B.氢原子从n=4的能级向n=3的能级跃迁时辐射光的波长最短
C.辐射光中,光子能量为0.31eV的光波长最长
D.用光子能量为14.2eV的光照射基态的氢原子,能够使其电离
答案 CD
解析 因为-13.6 eV+13.06 eV=-0.54 eV,知氢原子跃迁到第5能级,选项A错误;从n=5跃迁到n=1辐射的光子能量最大,波长最短,从n=5跃迁到n=4辐射的光子能量为
0.31 eV,波长最长,选项B错误,C正确;用光子能量为14.2 eV的光照射基态的氢原子,能够使其电离,选项D正确.
10.(多选)如图6所示是氢原子能级示意图的一部分,则下列说法正确的是( )
图6
A.用波长为600nm的X射线照射,可以使稳定的氢原子电离
B.用能量是10.2eV的光子可以激发处于基态的氢原子
C.用能量是2.5eV的光子入射,可以使基态的氢原子激发
D.用能量是11.0eV 的外来电子,可以使处于基态的氢原子激发
答案 BD
解析 “稳定的氢原子”指处于基态的氢原子,要使其电离,光子的能量必须大于或等于
13.6 eV,而波长为600 nm的X射线的能量为E=h=6.63×10-34×eV≈2.07 eV<13.6 eV,A错误.因ΔE=E2-E1=(-3.4 eV)-(-13.6 eV)=10.2 eV,故10.2 eV的光子可以使氢原子从基态跃迁到n=2的激发态,B正确;2.5 eV的光子能量不等于任何其他能级与基态的能级差,因此不能使氢原子发生跃迁,C错误;外来电子可以将10.2 eV的能量传递给氢原子,使它激发,外来电子还剩余11.0 eV-10.2 eV=0.8 eV的能量,D正确.
二、非选择题
11.(氢原子跃迁规律的应用)如图7所示为氢原子最低的四个能级,当大量氢原子在这些能级间跃迁时,
图7
(1)最多有可能放出几种能量的光子?
(2)在哪两个能级间跃迁时,所发出的光子波长最长?最长波长是多少?
答案 (1)6种 (2)第4能级向第3能级 1.88×10-6m
解析 (1)由N=C,可得N=C=6种.
(2)氢原子由第4能级向第3能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据h=hν=E4-E3=-0.85 eV-(-1.51) eV=0.66 eV,λ==m≈1.88×10-6m.
12.(氢原子跃迁规律的应用)氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E1=-54.4eV,氦离子能级的示意图如图8所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢原子.求:
图8
(1)氦离子发出的光子中,有几种能使氢原子发生光电效应?
(2)发生上述光电效应时,光电子的最大动能最大是多少?
答案 (1)3种
(2)37.4eV
解析 (1)一群处于n=4能级的氦离子跃迁时,一共发出N==6种光子.
由频率条件hν=Em-En知6种光子的能量分别是
由n=4到n=3,hν1=E4-E3=2.6eV,
由n=4到n=2,hν2=E4-E2=10.2eV,
由n=4到n=1,hν3=E4-E1=51.0eV,
由n=3到n=2,hν4=E3-E2=7.6eV,
由n=3到n=1,hν5=E3-E1=48.4eV,
由n=2到n=1,hν6=E2-E1=40.8eV,
由发生光电效应的条件知,hν3、hν5、hν6三种光子可使处于基态的氢原子发生光电效应.
(2)由光电效应方程Ekm=hν-W知,能量为51.0eV的光子使氢原子逸出的光电子最大动能最大,将W=13.6eV代入Ekm=hν-W,得Ekm=37.4eV.
课件35张PPT。
学业分层测评知识点一知识点二
玻 尔 的 原 子 模 型向外 原子核的引力 原子核 卢瑟福模型 量子论 定态 对外辐射 两个定态 辐射(或吸收) 能量差 n2r1 能 级 原 子 光 谱 分立值 能级 最低 最近 其他轨道 稳定 自发 较低能级 基态 光子 较高能级 吸收 能量差 概率 最大