首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标B版
必修5
第三章 不等式
本章复习与测试
2020版高中数学新人教B版必修5第三章不等式章末复习学案(含解析)
文档属性
名称
2020版高中数学新人教B版必修5第三章不等式章末复习学案(含解析)
格式
zip
文件大小
152.8KB
资源类型
教案
版本资源
人教新课标B版
科目
数学
更新时间
2019-05-31 09:31:42
点击下载
图片预览
1
2
3
文档简介
第三章 不等式章末复习
学习目标 1.整合知识结构,进一步巩固、深化所学知识.2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式.3.会用均值不等式证明不等式,求解最值问题.4.体会“三个二次”之间的内在联系在解决问题中的作用.5.能熟练地运用图解法解决线性规划问题.
1.不等式的性质
名称
式子表达
性质1(对称性)
a>b?b<a
性质2(传递性)
a>b,b>c?a>c
性质3
a>b?a+c>b+c
推论1
a+b>c?a>c-b
a>b,c>d?a+c>b+d
推论2
性质4
a>b,c<0?ac<bc
a>b,c>0?ac>bc
推论1
a>b>0,c>d>0?ac>bd
a>b>0?an>bn(n∈N+,n>1)
a>b>0?>(n∈N+,n>1)
推论2
推论3
2.均值不等式
利用均值不等式证明不等式和求最值的区别
(1)利用均值不等式证明不等式,只需关注不等式成立的条件.
(2)利用均值不等式求最值,需要同时关注三个限制条件:一正;二定;三相等.
3.三个二次之间的关系
设f(x)=ax2+bx+c(a>0),方程ax2+bx+c=0的判别式Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
解不等式f(x)>0或f(x)<0的步骤
求方程f(x)=0的解
有两个不等的实数解x1,x2
有两个相等的实数解x1,x2
没有实数解
画函数y=f(x)的示意图
得不等式的解集
f(x)>0
{x|x
x2}
R
f(x)<0
{x|x1
?
?
4.线性规划问题求解步骤
(1)把问题要求转化为约束条件;
(2)根据约束条件作出可行域;
(3)对目标函数变形并解释其几何意义;
(4)移动目标函数寻找最优解;
(5)解相关方程组求出最优解.
题型一 利用均值不等式求最值
例1 函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则+的最小值为________.
答案 4
解析 y=a1-x(a>0,a≠1)的图象恒过定点A(1,1),
∵点A在直线mx+ny-1=0上,∴m+n=1,
方法一 +==≥=4,
当且仅当m=n=时,取等号.
方法二 +=(m+n)
=2++≥2+2=4,
当且仅当即m=n=时取等号.
∴min=4.
反思感悟 当所给附加条件是一个等式时,常见的用法有两个:一个是用这个等式消元,化为命题角度1的类型;一个是直接利用该等式代入,或构造定值.
跟踪训练1 设x,y都是正数,且+=3,求2x+y的最小值.
解 ∵+=3,∴=1.
∴2x+y=(2x+y)×1=(2x+y)×
=≥
=+=.
当且仅当=,即y=2x时,取等号.
又∵+=3,∴x=,y=.
∴2x+y的最小值为.
题型二 “三个二次”之间的关系
例2 若关于x的不等式ax2+bx+2>0的解集是,则a+b=________.
答案 -14
解析 ∵x1=-,x2=是方程ax2+bx+2=0的两个根,
∴解得
∴a+b=-14.
反思感悟 (1)“三个二次”之间要选择一个运算简单的方向进行转化.
(2)用不等式组来刻画两根的位置体现了数形结合的思想.
跟踪训练2 设不等式x2-2ax+a+2≤0的解集为M,如果M?[1,4],求实数a的取值范围.
解 M?[1,4]有两种情况:
其一是M=?,此时Δ<0;其二是M≠?,此时Δ=0或Δ>0,下面分三种情况计算a的取值范围.
设f(x)=x2-2ax+a+2,
对方程x2-2ax+a+2=0,
有Δ=(-2a)2-4(a+2)=4(a2-a-2),
①当Δ<0时,-1
②当Δ=0时,a=-1或a=2.
当a=-1时,M={-1}?[1,4],不满足题意;
当a=2时,M={2}?[1,4],满足题意.
③当Δ>0时,a<-1或a>2.
设方程f(x)=0的两根为x1,x2,且x1
那么M=[x1,x2],M?[1,4]?1≤x1
?即
解得2
综上可知,当M?[1,4]时,a的取值范围是.
题型三 一元二次不等式的解法
例3 解关于x的不等式x2-(a+a2)x+a3>0(a∈R).
解 原不等式可化为(x-a)(x-a2)>0.
当a<0时,a
a2};
当a=0时,a2=a,原不等式的解集为{x|x≠0,x∈R};
当0
a};
当a=1时,a2=a,原不等式的解集为{x|x≠1,x∈R};
当a>1时,a
a2};
综上所述,当a<0或a>1时,原不等式的解集为{x|x
a2};
当0
a};
当a=1时,原不等式的解集为{x|x≠1,x∈R};
当a=0时,原不等式的解集为{x|x≠0,x∈R}.
反思感悟 对于含参数的一元二次不等式,若二次项系数为常数,则可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式分类讨论,分类要不重不漏.
跟踪训练3 已知常数a∈R,解关于x的不等式ax2-2x+a<0.
解 (1)若a=0,则原不等式为-2x<0,故解集为{x|x>0}.
(2)若a>0,Δ=4-4a2.
①当Δ>0,即0
∴当0
②当Δ=0,即a=1时,原不等式的解集为?.
③当Δ<0,即a>1时,原不等式的解集为?.
(3)若a<0,Δ=4-4a2.
①当Δ>0,即-1
②当Δ=0,即a=-1时,原不等式化为(x+1)2>0,
∴当a=-1时,原不等式的解集为{x|x∈R且x≠-1}.
③当Δ<0,即a<-1时,原不等式的解集为R.
综上所述,当a≥1时,原不等式的解集为?;
当0
当a=0时,原不等式的解集为{x|x>0};
当-1
当a=-1时,原不等式的解集为{x|x∈R且x≠-1};
当a<-1时,原不等式的解集为R.
题型四 线性规划问题
例4 已知变量x,y满足约束条件求z=2x+y的最大值和最小值.
解 如图,阴影部分(含边界)为不等式组所表示的可行域.
设l0:2x+y=0,l:2x+y=z,则z的几何意义是直线y=-2x+z在y轴上的截距,显然,直线越往上移动,对应在y轴上的截距越大,即z越大;直线越往下移动,对应在y轴上的截距越小,即z越小.
上下平移直线l0,可得当l0过点A(5,2)时,zmax=2×5+2=12;当l0过点B(1,1)时,zmin=2×1+1=3.
反思感悟 (1)因为最优解与可行域的边界斜率有关,所以画可行域要尽可能精确.
(2)线性目标函数的最值与纵截距不一定是增函数关系,所以要关注纵截距越大,z越大还是越小.
跟踪训练4 某人承揽一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个;乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张才能使得总用料面积最小.
解 设需要甲种原料x张,乙种原料y张,则可做文字标牌(x+2y)个,绘画标牌(2x+y)个,
由题意可得
所用原料的总面积为z=3x+2y,
作出可行域如图阴影部分(含边界)所示.
在一组平行直线3x+2y=z中,
经过可行域内的点A时,z取得最小值,
直线2x+y=5和直线x+2y=4的交点为A(2,1),
即最优解为(2,1).
所以使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.
1.(2018·全国Ⅰ)已知集合A={x|x2-x-2>0},则?RA等于( )
A.{x|-1
B.{x|-1≤x≤2}
C.{x|x<-1}∪{x|x>2}
D.{x|x≤-1}∪{x|x≥2}
答案 B
解析 方法一 A={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以?RA={x|-1≤x≤2},故选B.
方法二 因为A={x|x2-x-2>0},所以?RA={x|x2-x-2≤0}={x|-1≤x≤2},故选B.
2.已知实数x,y满足条件若目标函数z=mx-y(m≠0)取得最大值时的最优解有无穷多个,则实数m的值为( )
A.1B.C.-D.-1
答案 A
解析 作出不等式组表示的平面区域如图阴影部分(包含边界)所示,
由图可知当直线y=mx-z(m≠0)与直线2x-2y+1=0重合,即m=1时,目标函数z=mx-y取最大值的最优解有无穷多个,故选A.
3.若不等式ax2+bx-2>0的解集为,则a+b等于( )
A.-18B.8C.-13D.1
答案 C
解析 ∵-2和-是方程ax2+bx-2=0的两根.
∴
∴∴a+b=-13.
4.若不等式4(a-2)x2+2(a-2)x-1<0对一切x∈R恒成立,则a的取值范围是__________.
答案 (-2,2]
解析 不等式4(a-2)x2+2(a-2)x-1<0,当a-2=0,即a=2时,不等式恒成立,符合题意;当a-2≠0时,要使不等式恒成立,需
解得-2
5.已知f(x)=32x-k·3x+2,当x∈R时,f(x)恒为正,则k的取值范围为________.
答案 (-∞,2)
解析 f(x)=(3x)2-k·3x+2>0,
∴k<=3x+,3x+≥2=2,
当且仅当3x=时,等号成立.∴k<2.
1.不等式的基本性质
不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的性质.
2.一元二次不等式的求解方法
对于一元二次不等式ax2+bx+c>0(或≥0,<0,≤0)(其中a≠0)的求解,要联想两个方面的问题:二次函数y=ax2+bx+c与x轴的交点;方程ax2+bx+c=0的根.按照Δ>0,Δ=0,Δ<0分三种情况讨论对应的一元二次不等式ax2+bx+c>0(或≥0,<0,≤0)(a≠0)的解集.
3.二元一次不等式表示的平面区域的判定
对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+By+C的符号相同,取一个特殊点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表示直线哪一侧的平面区域,可简记为“直线定界,特殊点定域”.特别地,当C≠0时,常取原点作为特殊点.
4.求目标函数最优解的方法
通过平移目标函数所对应的直线,可以发现取得最优解对应的点往往是可行域的顶点(或边界),于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.
5.运用均值不等式求最值时把握三个条件
①“一正”——各项为正数;
②“二定”——“和”或“积”为定值;
③“三相等”——等号一定能取到.
这三个条件缺一不可.
点击下载
同课章节目录
第一章 解直角三角形
1.1 正弦定理和余弦定理
1.2 应用举例
第二章 数列
2.1 数列
2.2 等差数列
2.3 等比数列
第三章 不等式
3.1 不等关系与不等式
3.2 均值不等式
3.3 一元二次不等式及其解法
3.4 不等式的实际应用
3.5 二元一次不等式(组)与简单线性规划问题
点击下载
VIP下载