3.1.4 概率的加法公式
学习目标 1.理解互斥事件与对立事件的区别与联系.2.会用互斥事件的概率加法公式求概率.3.会用对立事件的概率公式求概率.
知识点一 事件的运算
思考 一粒骰子掷一次,记事件C={出现的点数为偶数},事件D={出现的点数小于3},当事件C,D都发生时,掷出的点数是多少?事件C,D至少有一个发生时呢?
答案 事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点数为2.事件C,D至少有一个发生,掷出的点数可以是1,2,4,6.
梳理 事件的并
一般地,由事件A和B至少有一个发生(即A发生,或B发生,或A,B都发生)所构成的事件C,称为事件A与B的并(或和).记作C=A∪B.事件A∪B是由事件A或B所包含的基本事件所组成的集合.如图中阴影部分所表示的就是A∪B.
知识点二 互斥与对立的概念
思考 一粒骰子掷一次,事件E={出现的点数为3},事件F={出现的点数大于3},事件G={出现的点数小于4},则E与F是什么事件?G与F是什么事件?
答案 ∵E,F不能同时发生,∴E与F是互斥事件但不是对立事件.
∵G,F不能同时发生,且G,F必有一个发生,∴G与F既是互斥事件又是对立事件.
梳理
1.互斥事件:不可能同时发生的两个事件叫做互斥事件(或称互不相容事件).
2.对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A的对立事件记作.由于A与是互斥事件,所以P(Ω)=P(A∪)=P(A)+P(),又由Ω是必然事件,得到P(Ω)=1.所以P(A)+P()=1,即P()=1-P(A).
知识点三 概率的基本性质
思考 概率的取值范围是什么?为什么?
答案 概率的取值范围是0~1之间,即0≤P(A)≤1;由于事件的频数总是小于或等于试验的次数,所以频率在0~1之间,因而概率的取值范围也在0~1之间.
梳理 概率的几个基本性质
(1)概率的取值范围为[0,1].
(2)必然事件的概率为1,不可能事件的概率为0.
(3)互斥事件的概率加法公式
①假定A,B是互斥事件,则P(A∪B)=P(A)+P(B).
②一般地,如果事件A1,A2,…,An两两互斥(彼此互斥),那么事件“A1∪A2∪…∪An”发生(是指事件A1,A2,…,An中至少有一个发生)的概率,等于这n个事件分别发生的概率和,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
1.若两个事件是互斥事件,则这两个事件是对立事件.( × )
2.若两个事件是对立事件,则这两个事件也是互斥事件.( √ )
3.若两个事件是对立事件,则这两个事件概率之和为1.( √ )
题型一 事件关系的判断
例1 从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.
解 (1)是互斥事件,不是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.
(2)既是互斥事件,又是对立事件.
理由是:从40张扑克牌中,任意抽取1张,“抽出红色牌”与“抽出黑色牌”,两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽出的牌点数为10,因此,二者不是互斥事件,当然不可能是对立事件.
反思与感悟 (1)不可能事件记作?,任何事件都包含不可能事件.
(2)事件的包含关系与集合的包含关系相似,不可能事件与空集相似,学习时要注意类比记忆.
(3)事件A也包含于事件A,即A?A.
(4)两个事件相等的实质就是两个事件为相同事件,相等的事件A,B总是同时发生或同时不发生.
跟踪训练1 从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是( )
A.至少有一个红球与都是红球
B.至少有一个红球与都是白球
C.至少有一个红球与至少有一个白球
D.恰有一个红球与恰有两个红球
答案 D
解析 根据互斥事件与对立事件的定义判断.A中两事件不是互斥事件,事件“3个球都是红球”是两事件的交事件;B中两事件是对立事件;C中两事件能同时发生,如“恰有一个红球和两个白球”,故不是互斥事件;D中两事件是互斥而不对立事件.
题型二 互斥事件的概率加法公式
例2 在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,计算小明在数学考试中取得80分以上成绩的概率和小明考试及格的概率.
解 分别记小明的考试成绩在90分以上,在80~89分,在70~79分,在60~69分为事件B,C,D,E,这四个事件是彼此互斥的.根据概率的加法公式,小明的考试成绩在80分以上的概率是
P(B∪C)=P(B)+P(C)=0.18+0.51=0.69.
小明考试及格的概率为P(B∪C∪D∪E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.
反思与感悟 在求某些较为复杂事件的概率时,先将它分解为一些较为简单的、并且概率已知(或较容易求出)的彼此互斥的事件,然后利用概率的加法公式求出概率.因此互斥事件的概率加法公式具有“化整为零、化难为易”的功效,但需要注意的是使用该公式时必须检验是否满足它的前提条件“彼此互斥”.
跟踪训练2 假设向三个相邻的军火库投掷一枚炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也要发生爆炸,求投掷一枚炸弹,军火库发生爆炸的概率.
解 因为只投掷了一枚炸弹,故炸中第一、第二、第三个军火库的事件是彼此互斥的.
令A,B,C分别表示炸中第一、第二、第三个军火库,
则P(A)=0.025,P(B)=P(C)=0.1.
令D表示军火库爆炸这个事件,则有D=A∪B∪C,又因为A,B,C是两两互斥事件,故所求概率为P(D)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.
题型三 用互斥、对立事件求概率
例3 甲、乙两人下棋,和棋的概率是,乙获胜的概率为,求:(1)甲获胜的概率;(2)甲不输的概率.
解 (1)“甲获胜”可看成是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率为1--=.
(2)方法一 “甲不输”可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(甲不输)=+=.
方法二 “甲不输”可看成是“乙获胜”的对立事件,所以P(甲不输)=1-=,故甲不输的概率为.
反思与感悟 (1)只有当A,B互斥时,公式P(A∪B)=P(A)+P(B)才成立;只有当A,B互为对立事件时,公式P(A)=1-P(B)才成立.
(2)复杂的互斥事件概率的求法有两种:一是直接求解,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算;二是间接求解,先找出所求事件的对立事件,再用公式P(A)=1-P()求解.
跟踪训练3 从一箱产品中随机地抽取一件,设事件A=“抽到一等品”,事件B=“抽到二等品”,事件C=“抽到三等品”.已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为( )
A.0.20B.0.39C.0.35D.0.90
答案 C
解析 ∵抽到的不是一等品的对立事件是抽到一等品,而P(A)=0.65,∴抽到的不是一等品的概率是1-0.65=0.35.
1.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.
在上述各对事件中,是对立事件的是( )
A.①B.②④C.③D.③④
答案 C
解析 从1,2,…,9中任取两数,包括一奇一偶、两奇、两偶,共三种互斥事件,所以只有③中的两个事件才是对立事件.
2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )
A.0.42B.0.28C.0.3D.0.7
答案 C
解析 ∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1-0.42-0.28=0.3,故选C.
3.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.
答案
解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.
4.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ,Ⅱ,Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是______.
答案 0.10
解析 设“射手命中圆面Ⅰ”为事件A,“命中圆环Ⅱ”为事件B,“命中圆环Ⅲ”为事件C,“不中靶”为事件D,则A,B,C彼此互斥,故射手中靶的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.
因为中靶和不中靶是对立事件,故不命中靶的概率为
P(D)=1-P(A∪B∪C)=1-0.90=0.10.
5.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4.
求:(1)他乘火车或飞机去的概率;
(2)他不乘轮船去的概率.
解 设乘火车去开会为事件A,乘轮船去开会为事件B,乘汽车去开会为事件C,乘飞机去开会为事件D,它们彼此互斥.
(1)P(A∪D)=P(A)+P(D)=0.3+0.4=0.7.
(2)P=1-P(B)=1-0.2=0.8.
1.互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥.
2.互斥事件概率的加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率的加法公式P(A∪B)=P(A)+P(B).
3.求复杂事件的概率通常有两种方法:
(1)将所求事件转化成彼此互斥事件的并事件;
(2)先求其对立事件的概率,再求所求事件的概率.
一、选择题
1.打靶3次,事件Ai表示“击中i发”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示( )
A.全部击中 B.至少击中1发
C.至少击中2发 D.以上均不正确
答案 B
解析 A1∪A2∪A3所表示的含义是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发,2发或3发,故选B.
2.抛掷一枚质地均匀的骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是2的倍数”,事件D为“落地时向上的点数是2或4”,则下列每对事件是互斥事件但不是对立事件的是( )
A.A与B B.B与C
C.A与D D.B与D
答案 C
解析 A与D互斥,但不对立.故选C.
3.从一批羽毛球中任取一个,如果其质量小于4.8g的概率为0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)内的概率是( )
A.0.62 B.0.38
C.0.70 D.0.68
答案 B
解析 利用对立事件的概率公式可得P=1-(0.3+0.32)=0.38.
4.袋内装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )
A.至少有一个白球与都是白球
B.至少有一个白球与至少有一个红球
C.恰有一个红球与一个白球一个黑球
D.至少有一个红球与红、黑球各一个
答案 C
解析 直接依据互斥事件和对立事件的概念判断即可.
5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )
A.B.C.D.
答案 D
解析 由题意知4位同学各自在周六、周日两天中任选一天参加公益活动,其中4位同学都选周六的概率为,4位同学都选周日的概率为,故周六、周日都有同学参加公益活动的概率P=1--=,故选D.
6.某小组有三名男生和两名女生,从中任选两名去参加比赛,则下列各对事件中是互斥事件的有( )
①恰有一名男生和全是男生;
②至少有一名男生和至少有一名女生;
③至少有一名男生和全是男生;
④至少有一名男生和全是女生.
A.①③④B.②③④C.②③D.①④
答案 D
解析 ①是互斥事件.恰有一名男生的实质是选出的两名同学中有一名男生和一名女生,它与全是男生不可能同时发生;②不是互斥事件;③不是互斥事件;④是互斥事件.至少有一名男生与全是女生不可能同时发生.
7.一箱产品有正品4件、次品3件,从中任取2件,有如下事件:
①“恰有1件次品”和“恰有2件次品”;
②“至少有1件次品”和“都是次品”;
③“至少有1件正品”和“至少有1件次品”;
④“至少有1件次品”和“都是正品”.
其中互斥事件有( )
A.1组B.2组C.3组D.4组
答案 B
解析 对于①,“恰有1件次品”就是“1件正品,1件次品”,与“2件都是次品”显然是互斥事件;
对于②,“至少有1件次品”包括“恰有1件次品”和“2件都是次品”,与“都是次品”可能同时发生,因此这两个事件不是互斥事件;
对于③,“至少有1件正品”包括“恰有1件正品”和“2件都是正品”,与“至少有1件次品”不是互斥事件;
对于④,“至少有1件次品”包括“恰有1件次品”和“2件都是次品”,与“都是正品”显然是互斥事件,故①④是互斥事件.
二、填空题
8.若A,B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=________.
答案 0.3
解析 因为A,B为互斥事件,所以P(A∪B)=P(A)+P(B).所以P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.
9.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,已知所取的2瓶全在保质期内的概率为,则至少取到1瓶已过保质期的概率为________.
答案
解析 事件“至少取到1瓶已过保质期的饮料”与事件“没有取到已过保质期的饮料”是对立事件,根据对立事件的概率公式得P=1-=.
10.抛掷一枚骰子两次,若至少有一个1点或2点的概率为,则没有1点或2点的概率是________.
答案
解析 记事件A为“没有1点或2点”,B为“至少有一个1点或2点”,则A与B是互斥事件,且A与B是对立事件,故P(A)=1-P(B)=1-=.
11.同时抛掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是________.
答案
解析 记“既不出现5点也不出现6点”的事件为A,则P(A)=,“5点或6点至少出现一个”的事件为B.
因为A∩B为不可能事件,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.
故5点或6点至少出现一个的概率为.
三、解答题
12.根据以往的成绩记录,某队员击中目标靶的环数的频率分布情况如图所示:
(1)确定图中a的值;
(2)该队员进行一次射击,求击中环数大于7的概率(频率看成概率使用).
解 (1)由题图可得0.01+a+0.19+0.29+0.45=1,所以a=0.06.
(2)设事件A为“该队员射击,击中环数大于7”,它包含三个两两互斥的事件:该队员射击,击中环数为8,9,10.所以P(A)=0.29+0.45+0.01=0.75.
13.国家射击队的队员为在世界射击锦标赛上取得优异成绩在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:
命中环数
10
9
8
7
概率
0.32
0.28
0.18
0.12
求该射击队员在一次射击中:
(1)命中9环或10环的概率;(2)至少命中8环的概率;
(3)命中不足8环的概率.
解 记事件“射击一次,命中k环”为Ak(k∈N,k≤10),则事件Ak之间彼此互斥.
(1)设“射击一次,命中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件概率的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.6.
(2)设“射击一次,至少命中8环”为事件B,那么当A8,A9,A10之一发生时,事件B发生,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.
(3)设“射击一次命中不足8环”为事件C,由于事件C与事件B互为对立事件,故P(C)=1-P(B)=1-0.78=0.22.
四、探究与拓展
14.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.
答案 0.45
解析 由图可知,抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.
15.某商场有奖销售中,购物满100元可得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
解 (1)P(A)=,P(B)==,P(C)==.
故事件A,B,C的概率分别为,,.
(2)1张奖券中奖包含中特等奖,一等奖,二等奖.
设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==.故1张奖券的中奖概率为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”互为对立事件,
∴P(N)=1-P(A∪B)=1-=.
故1张奖券不中特等奖且不中一等奖的概率为.