第三章 概率章末复习
学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率.2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率.3.能区分古典概型与几何概型,并能求相应概率.
1.频率与概率
频率是概率的近似值,是随机的,随着试验的不同而变化;概率是多数次的试验中频率的稳定值,是一个常数,不要用一次或少数次试验中的频率来估计概率.
2.求较复杂概率的常用方法
(1)将所求事件转化为彼此互斥的事件的和;
(2)先求其对立事件的概率,然后再应用公式P(A)=1-P()求解.
3.古典概型概率的计算:关键要分清基本事件的总数n与事件A包含的基本事件的个数m,再利用公式P(A)=求解.有时需要用列举法把基本事件一一列举出来,在列举时必须按某一顺序做到不重不漏.
4.几何概型事件概率的计算
关键是求得事件A所占区域和整个区域的几何测度,然后代入公式求解.
1.对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ )
2.“在适当条件下,种下一粒种子观察它是否发芽”属于古典概型.( × )
3.几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )
题型一 频率与概率
例1 对一批U盘进行抽检,结果如下表:
抽出件数a
50
100
200
300
400
500
次品件数b
3
4
5
5
8
9
次品频率
(1)计算表中次品的频率;
(2)从这批U盘中任意抽取一个是次品的概率约是多少?
(3)为保证买到次品的顾客能够及时更换,要销售2000个U盘,至少需进货多少个U盘?
解 (1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.
(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任意抽取一个是次品的概率约是0.02.
(3)设需要进货x个U盘,为保证其中有2000个正品U盘,则x(1-0.02)≥2000,因为x是正整数,所以x≥2041,即至少需进货2041个U盘.
反思与感悟 概率是个常数.但除了几何概型,概率并不易知,故可用频率来估计.
跟踪训练1 某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:
射击次数n
10
20
50
100
200
500
击中靶心次数m
8
19
44
92
178
455
击中靶心的频率
0.8
0.95
0.88
0.92
0.89
0.91
(1)该射击运动员射击一次,击中靶心的概率大约是多少?
(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?
(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?
(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?
解 (1)由题意得,击中靶心的频率与0.9接近,故概率约为0.9.
(2)击中靶心的次数大约为300×0.9=270.
(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击中靶心的概率仍是0.9,所以不一定不击中靶心.
(4)不一定.
题型二 互斥事件与对立事件
例2 甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.
(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
解 把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;
“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;
“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种.
因此基本事件的总数为6+6+6+2=20.
(1)“甲抽到选择题,乙抽到判断题”的概率为=,“甲抽到判断题,乙抽到选择题”的概率为=,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为+=.
(2)“甲、乙两人都抽到判断题”的概率为=,故“甲、乙两人至少有一人抽到选择题”的概率为1-=.
反思与感悟 在求有关事件的概率时,若从正面分析,包含的事件较多或较烦琐,而其反面却较容易入手,这时,可以利用对立事件求解.
跟踪训练2 猎人在距离100米处射击一野兔,命中的概率为,如果第一次没有命中,则猎人进行第二次射击,但距离已是150米,如果又没有击中,则猎人进行第三次射击,但距离已是200米.已知猎人命中兔子的概率与距离的平方成反比,则三次内击中野兔的概率是多少?
解 三次内击中野兔,即第一次击中野兔或第二次击中野兔或第三次击中野兔,设第一、二、三次击中野兔分别为事件A,B,C.
设距离为d,命中的概率为P,则有P=,
将d=100,P=代入上式,可得k=5000,
所以P=,
所以P(B)=×=,
P(C)=××=.
又已知P(A)=,
所以P(A∪B∪C)=P(A)+P(B)+P(C)
=++=.
故三次内击中野兔的概率为.
题型三 古典概型与几何概型
例3 某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号
A1
A2
A3
A4
A5
质量指标(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指标(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样本的一等品中,随机抽取2件产品,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
解 (1)计算10件产品的综合指标S,如下表:
产品编号
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
S
4
4
6
3
4
5
4
5
3
5
其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.
(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.
②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.
所以P(B)==.
反思与感悟 古典概型与几何概型的共同点是各基本事件的等可能性;不同点是前者总的基本事件有限,后者无限.
跟踪训练3 如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边边长为2,向大正方形内投掷飞镖,则飞镖落在阴影部分的概率为( )
A.B.C.D.
答案 D
解析 设阴影小正方形边长为x,则在直角三角形中
有22+(x+2)2=()2,
解得x=1或x=-5(舍去),
∴阴影部分面积为1,
∴飞镖落在阴影部分的概率为.
题型四 数形结合思想在求解概率中的应用
例4 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,四个人按顺序依次从中摸出1个球(不放回),试求“第二个人摸到白球”的概率.
解 把四个人依次编号为甲、乙、丙、丁,把2个白球编上序号1,2,把2个黑球也编上序号1,2,于是四个人按顺序依次从袋内摸出1个球的所有可能结果,可用树形图直观地表示出来,如图所示.
从上面的树形图可以看出,试验的所有可能结果为24.第二人摸到白球的结果有12种,记第二个人摸到白球为事件A,则P(A)==.
反思与感悟 事件个数没有很明显的规律,而且涉及的基本事件又不是太多时,我们可借助树形图直观地将其表示出来,有利于条理地思考和表达.
跟踪训练4 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )
A.1- B.-
C. D.
答案 A
解析 设分别以OA,OB为直径的两个半圆交于点C,OA的中点为D,如图,连接OC,DC.
不妨令OA=OB=2,则OD=DA=DC=1.
在以OA为直径的半圆中,空白部分面积S1=+×1×1-=1,
所以整体图形中空白部分面积S2=2.
又因为S扇形OAB=×π×22=π,
所以阴影部分面积为S3=π-2.
所以P===1-.
1.下列事件:
①任取三条线段,这三条线段恰好组成直角三角形;②从一个三角形的三个顶点各任画一条射线,这三条射线交于一点;③实数a,b都不为0,但a2+b2=0;④明年12月28日的最高气温高于今年12月28日的最高气温,其中为随机事件的是( )
A.①②③ B.①②④
C.①③④ D.②③④
答案 B
解析 任取三条线段,这三条线段可能组成直角三角形,也可能组不成直角三角形,故①为随机事件;
从一个三角形的三个顶点各任画一条射线,三条射线可能不相交,交于一点、交于两点、交于三点,故②为随机事件;
若实数a,b都不为0,则a2+b2一定不等于0,故③为不可能事件;
由于明年12月28日还未到来,故明年12月28日的最高气温可能高于今年12月28日的最高气温,也可能低于今年12月28日的最高气温,还可能等于今年12月28日的最高气温.故④为随机事件.故选B.
2.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件 B.互斥但不对立事件
C.不可能事件 D.必然事件
答案 B
解析 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.
3.下列试验属于古典概型的有( )
①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色;
②在公交车站候车不超过10分钟的概率;
③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;
④从一桶水中取出100mL,观察是否含有大肠杆菌.
A.1个 B.2个
C.3个 D.4个
答案 A
解析 古典概型的两个基本特征是有限性和等可能性.①符合两个特征;对于②和④,基本事件的个数有无限多个;对于③,出现“两正”“两反”与“一正一反”的可能性并不相等,故选A.
4.甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( )
A. B.
C. D.无法确定
答案 C
解析 共有4个事件“甲、乙同住房间A,甲、乙同住房间B,甲住A乙住B,甲住B乙住A”,且各事件等可能,两人各住一个房间共有两种情况,所以甲、乙两人各住一间房的概率是.
5.任取一个三位正整数N,则对数log2N是一个正整数的概率是( )
A.B.C.D.
答案 C
解析 三位正整数有100~999,共900个,而满足log2N为正整数的N有27,28,29,共3个,故所求事件的概率为=.
1.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.若事件A1,A2,A3,…,An彼此互斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
2.关于古典概型,必须要解决好下面三个方面的问题:
(1)本试验是不是等可能的?
(2)本试验的基本事件有多少个?
(3)事件A是什么,它包含多少个基本事件?
只有回答好这三个方面的问题,解题才不会出错.
3.几何概型的试验中,事件A的概率P(A)只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.求试验为几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解.
一、选择题
1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:
“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( )
A.①② B.①③
C.②③ D.①②③
答案 A
解析 从装有红球、白球和黑球各2个的口袋内一次取出2个球,基本事件为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.②符合,理由同上.③两球至少有一个白球,其中包含两个都是白球,故不互斥.
2.集合A={1,2,3,4,5},B={0,1,2,3,4},点P的坐标为(m,n),m∈A,n∈B,则点P在直线x+y=6上方的概率为( )
A.B.C.D.
答案 D
解析 基本事件总数为25,点P在直线x+y=6上方的个数为6,
∴P=.
3.掷两颗均匀的骰子,则点数之和为5的概率等于( )
A.B.C.D.
答案 B
解析 基本事件36个,其中点数之和为5的有(1,4),(2,3),(3,2),(4,1),故概率为=.
4.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,则恰有一件次品的概率为( )
A.0.4B.0.6C.0.8D.1
答案 B
解析 用列举法列出基本事件总数为10.事件“恰有一件次品”包含的基本事件个数为6,则P==0.6.
5.某运动会期间,从来自A大学的2名志愿者和来自B大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A大学志愿者的概率是( )
A.B.C.D.
答案 C
解析 基本事件总数为15,事件包括的基本事件数为9,∴P==.
6.从正方形的四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )
A.B.C.D.
答案 C
解析 共可组成10条线段,其中小于边长的有4条,故不小于边长的有6条,所以不小于边长的概率为.
7.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )
A.B.C.D.
答案 B
解析 由几何概型公式知,所求概率为半圆的面积与矩形的面积之比,则P==,故选B.
二、填空题
8.从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.
答案
解析 基本事件有ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10个.其中有a的事件的个数为4个,分别为ab,ac,ad,ae.故所求概率为P==.
9.在区间[-3,2]上随机取一个数x,则事件“1≤x≤4”发生的概率是________.
答案
解析 ∵1≤x≤4,∴-2≤x≤0,∴所求概率P==.
10.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.
答案
解析 两本数学书编号为1,2,语文书编号为3,则共有123,132,231,213,312,321,6个基本事件.其中2本数学书相邻的事件有4个,分别为123,213,312,321,故所求概率P==.
11.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.
答案
三、解答题
12.如图所示,A是圆上固定的一点,在圆上其他位置任取一点A′,连接AA′,求弦AA′的长度大于等于半径的概率.
解 如图,当AA′的长度等于半径时,∠AOA′=60°,使AA′大于半径的弧度为240°,所以P==.
13.某水产试验厂实行某种鱼的人工孵化,10000个鱼卵孵出8513条鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30000个鱼卵大约能孵化出多少条鱼苗?
(3)要孵化出5000条鱼苗,大约需准备多少个鱼卵(精确到百位)?
解 (1)这种鱼卵的孵化频率为=0.8513,把它近似作为孵化的概率,即这种鱼卵的孵化概率是0.8513.
(2)设能孵化出x条鱼苗,则=0.8513,所以x=25539,即30000个鱼卵大约能孵化出25539条鱼苗.
(3)设大约需准备y个鱼卵,则=0.8513,所以y≈5900,即大约需准备5900个鱼卵.
四、探究与拓展
14.设集合A={0,1,2},B={0,1,2},从集合A和B中各随机取一个数,分别记为a,b,从而确定平面上的一个点P(a,b),设“点P(a,b)落在直线x+y=n上”为事件Cn(0≤n≤4,n∈N).若事件Cn的概率最大,则n的值为________.
答案 2
解析 基本事件为:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共9个.
当n=0时,落在直线x+y=0上的点只有(0,0);
当n=1时,落在直线x+y=1上的点有(0,1),(1,0),共2个;
当n=2时,落在直线x+y=2上的点只有(1,1),(2,0),(0,2),共3个;
当n=3时,落在直线x+y=3上的点只有(1,2),(2,1),共2个;
当n=4时,落在直线x+y=4上的点只有(2,2).
因此,当事件Cn的概率最大时,n=2.
15.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
解 (1)由题意,得(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3, 1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.
设“抽取的卡片上的数字满足a+b=c”为事件A,
则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.
所以P(A)==.
因此,“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,
则事件包括(1,1,1),(2,2,2),(3,3,3),共3种.
所以P(B)=1-P()=1-=.
因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.