2019年高考数学热点问题解题策略指导系列专题01 数学文化热点问题(文理通用)

文档属性

名称 2019年高考数学热点问题解题策略指导系列专题01 数学文化热点问题(文理通用)
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2019-06-04 10:03:41

文档简介

2019高考数学热点问题解题策略指导系列
专题01 数学文化热点问题
【最新命题动向】教育部考试中心要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.比如,在数学中增加数学文化的内容”.因此,我们特别编写了此课时,将数学文化与数学知识相结合.
【热点一】 立体几何中的数学传统文化题
【典例1】 “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是(   )

A.a,b           B.a,c
C.c,b D.b,d


  【规律与方法】
“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一.本题取材于“牟合方盖”,通过加工改造,添加解释和提供直观图的方式降低了理解题意的难度.解题从识“图”到想“图”再到构“图”,考生要经历分析、判断的逻辑过程.另外,我国古代数学中的其他著名几何体,如“阳马”“鳖臑”和“堑堵”等的三视图问题都有可能在高考中考查.
【跟踪训练1】
《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为(   )
A.1丈3尺 B.5丈4尺
C.9丈2尺 D.48丈6尺



【热点二】 数列中的数学传统文化题
【典例2】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了(   )
A.192里         B.96里
C.48里 D.24里


  【方法与规律】
与等差数列一样,我国古代数学涉及等比数列问题也有很多,因此,涉及等比数列的数学文化题也频繁出现在各级各类考试试卷中.解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比数列的概念、通项公式和前n项和公式.
【跟踪训练2】《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为(   )

A.五寸 B.二尺五寸
C.三尺五寸 D.一丈二尺五寸


【热点三】 算法中的数学传统文化题
 【典例3】如图所示算法框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该算法框图,若输入的a,b分别为8,12,则输出的a=(   )

A.4            B.2
C.0 D.14


  【方法与规律】
《九章算术》系统总结了我国古代人民的优秀数学思想,开创了构造算法以解决各类问题的东方数学发展的光辉道路,这与当今计算机科学的飞速发展对数学提出的要求不谋而合.本题算法框图的算法思路源于《九章算术》中计算两个正整数的最大公约数的“更相减损术”算法.
【跟踪训练3】(2019·益阳、湘潭调研)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的算法框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,3.则输出v的值为(  )

A. 15 B. 16
C. 47 D. 48



【热点四】 概率统计中的传统文化题
【典例4】 (2018·全国Ⅰ卷)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则(   )

A.p1=p2        B.p1=p3
C.p2=p3 D.p1=p2+p3


  【方法与规律】
从中国古代文学作品中选取素材考查数学问题,丰富了数学文化题的取材途径.试题插图的创新是本题的一个亮点,其一,增强了数学问题的生活化,使数学的应用更贴近考生的生活实际;其二,有利于考生分析问题和解决问题,这对稳定考生在考试中的情绪和心态起到了较好的效果;其三,探索了数学试题插图的新形式,给出了如何将抽象的数学问题直观化的范例.
【跟踪训练4】(理科)(2018·全国Ⅱ卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(   )
A. B.
C. D.



【跟踪训练4】(文科)2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米, 面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是(   )

A. mm2 B. mm2
C. mm2 D. mm2



【热点五】 三角函数中的数学传统文化题
【典例5】 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan = ________ .




【方法与规律】
1700多年前,赵爽绘制了极富创意的弦图,采用“出入相补”原理使得勾股定理的证明不证自明.该题取材于第24届国际数学家大会会标,题干大气,设问自然,流露出丰富的文化内涵.既巧妙地考查了三角函数的相关知识,又丰富了弦图的内涵,如正方形四边相等寓言各国及来宾地位平等,小正方形和三角形紧紧簇拥在一起,表明各国数学家要密切合作交流等等.
【跟踪训练5】(2019·沈阳监测)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是(   )
A.             B.
C. D.




2019高考数学热点问题解题策略指导系列
专题01 数学文化热点问题
【最新命题动向】教育部考试中心要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.比如,在数学中增加数学文化的内容”.因此,我们特别编写了此课时,将数学文化与数学知识相结合.
【热点一】 立体几何中的数学传统文化题
【典例1】 “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是(   )

A.a,b           B.a,c
C.c,b D.b,d
【解析】 A 当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.
  【规律与方法】
“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一.本题取材于“牟合方盖”,通过加工改造,添加解释和提供直观图的方式降低了理解题意的难度.解题从识“图”到想“图”再到构“图”,考生要经历分析、判断的逻辑过程.另外,我国古代数学中的其他著名几何体,如“阳马”“鳖臑”和“堑堵”等的三视图问题都有可能在高考中考查.
【跟踪训练1】
《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为(   )
A.1丈3尺 B.5丈4尺
C.9丈2尺 D.48丈6尺
【解析】:B 设圆柱底面圆半径为r尺,高为h尺,依题意,圆柱体积为V=πr2h=2 000×1.62≈3×r2×13.33,所以r2≈81,即r≈9,所以圆柱底面圆周长为2πr≈54,54尺=5丈4尺,则圆柱底面圆周长约为5丈4尺,故选B.
【热点二】 数列中的数学传统文化题
【典例2】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了(   )
A.192里         B.96里
C.48里 D.24里
【解析】: B 等比数列{an}的首项为a1,公比为q=,依题意有= 378,解得a1=192,则a2=192×= 96,即第二天走了96里,故选B.
  【方法与规律】
与等差数列一样,我国古代数学涉及等比数列问题也有很多,因此,涉及等比数列的数学文化题也频繁出现在各级各类考试试卷中.解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比数列的概念、通项公式和前n项和公式.
【跟踪训练2】《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为(   )

A.五寸 B.二尺五寸
C.三尺五寸 D.一丈二尺五寸
【解析】:B 设晷长为等差数列{an},公差为d,a1=15,a13=135,则15+12d=135,解得d=10.∴a2=15+10=25,
∴《易经》中所记录的惊蛰的晷影长是2尺5寸.故选B.
【热点三】 算法中的数学传统文化题
 【典例3】如图所示算法框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该算法框图,若输入的a,b分别为8,12,则输出的a=(   )

A.4            B.2
C.0 D.14
【解析】: A 由算法框图输入的a=8,b=12,按算法框图所示依次执行,可得b=12-8=4,a=8;a=8-4=4,b=4,a=b,所以输出a=4.故选A.
  【方法与规律】
《九章算术》系统总结了我国古代人民的优秀数学思想,开创了构造算法以解决各类问题的东方数学发展的光辉道路,这与当今计算机科学的飞速发展对数学提出的要求不谋而合.本题算法框图的算法思路源于《九章算术》中计算两个正整数的最大公约数的“更相减损术”算法.
【跟踪训练3】(2019·益阳、湘潭调研)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的算法框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,3.则输出v的值为(  )

A. 15 B. 16
C. 47 D. 48
【解析】:D 执行算法框图:
输入n=3,x=3,v=1,i=2,i≥0,是
i≥0,是, v=1×3+2=5,i=1;
i≥0,是, v=5×3+1=16,i=0;
i≥0,是, v=16×3+0=48,i=-1;
i≥0,否,输出v=48.
【热点四】 概率统计中的传统文化题
【典例4】 (2018·全国Ⅰ卷)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则(   )

A.p1=p2        B.p1=p3
C.p2=p3 D.p1=p2+p3
【解析】: A 法一:设直角三角形ABC的内角A,B,C所对的边分别为a,b,c,则区域Ⅰ的面积即△ABC的面积为S1=bc,区域Ⅱ的面积S2=π×2+π×2-=π(c2+b2-a2)+bc=bc,所以S1=S2,由几何概型的知识知p1=p2,故选A.
法二:不妨设△ABC为等腰直角三角形,AB=AC=2,则BC=2,所以区域Ⅰ的面积即△ABC的面积,为S1=×2×2=2,区域Ⅱ的面积S2=π×12-=2,区域Ⅲ的面积S3=-2=π-2.根据几何概型的概率计算公式,得p1=p2=,p3=,所以p1≠p3,p2≠p3,p1≠p2+p3,故选A.
  【方法与规律】
从中国古代文学作品中选取素材考查数学问题,丰富了数学文化题的取材途径.试题插图的创新是本题的一个亮点,其一,增强了数学问题的生活化,使数学的应用更贴近考生的生活实际;其二,有利于考生分析问题和解决问题,这对稳定考生在考试中的情绪和心态起到了较好的效果;其三,探索了数学试题插图的新形式,给出了如何将抽象的数学问题直观化的范例.
【跟踪训练4】(理科)(2018·全国Ⅱ卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(   )
A. B.
C. D.
【解析】:C 不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率p==,故选C.
【跟踪训练4】(文科)2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米, 面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是(   )

A. mm2 B. mm2
C. mm2 D. mm2
【解析】B 利用古典概型近似几何概型可得,芝麻落在军旗内的概率为p==,设军旗的面积为S,由题意可得:=,∴S=×π×112=π,故选B.
【热点五】 三角函数中的数学传统文化题
【典例5】 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan = ________ .

【解析】: 依题意得大、小正方形的边长分别是5,1,于是有5sin θ-5cos θ=1(0<θ<),即有sin θ-cos θ=.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=,则sin θ+cos θ=,因此sin θ=,cos θ=,tan θ=,故tan==-7.
【方法与规律】
1700多年前,赵爽绘制了极富创意的弦图,采用“出入相补”原理使得勾股定理的证明不证自明.该题取材于第24届国际数学家大会会标,题干大气,设问自然,流露出丰富的文化内涵.既巧妙地考查了三角函数的相关知识,又丰富了弦图的内涵,如正方形四边相等寓言各国及来宾地位平等,小正方形和三角形紧紧簇拥在一起,表明各国数学家要密切合作交流等等.
【跟踪训练5】(2019·沈阳监测)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是(   )
A.             B.
C. D.
【解析】: B 设圆的半径为R,则圆的内接正六边形可以分解为6个全等的三角形,且每个三角形的边长为R,据此可得,圆的面积为S1=πR2,其内接正六边形的面积为S2=6×=R2,利用几何概型计算公式可得:此点取自该圆内接正六边形的概率是p==.故选B.




同课章节目录