北师大版九年级上册数学:1.1菱形的性质与判定(教案+导学案,共四份)

文档属性

名称 北师大版九年级上册数学:1.1菱形的性质与判定(教案+导学案,共四份)
格式 zip
文件大小 744.2KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-06-09 21:29:32

文档简介

1.1 菱形的性质与判定
第1课时 菱形的性质
1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;
2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;
3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)
                   
一、情景导入
请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
让学生举一些日常生活中所见到过的菱形的例子.
总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.
二、合作探究
探究点一:菱形的性质
【类型一】 菱形的四条边相等
如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是(  )
A.10
B.12
C.15
D.20
解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD的周长.
∵四边形ABCD是菱形,
∴AB=AD.
又∵∠A=60°,
∴△ABD是等边三角形,
∴△ABD的周长=3AB=15.
故选C.
方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.
【类型二】 菱形的对角线互相垂直
如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.
解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.
解:因为四边形ABCD是菱形,
所以AC⊥BD,
AO=AC,BO=BD.
因为AC=6cm,BD=12cm,
所以AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理,得
AB===3(cm).
所以菱形的周长=4AB=4×3=12(cm).
方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解.
【类型三】 菱形是轴对称图形
如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.
解析:要证明AE=AF,需要先证明△ACE≌△ACF.
证明:连接AC.
∵四边形ABCD是菱形,
∴AC平分∠BAD,
即∠BAC=∠DAC.
∵CE⊥AB,CF⊥AD,
∴∠AEC=∠AFC=90°.
在△ACE和△ACF中,

∴△ACE≌△ACF.
∴AE=AF.
方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.
探究点二:菱形的面积的计算方法
如图所示,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,AB=13,OA=5,OB=12.求菱形ABCD两对边的距离h.
解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.
解:在Rt△AOB中,AB=13,OA=5,OB=12,
于是S△AOB=OA·OB=×5×12=30,
所以S菱形ABCD=4S△AOB=4×30=120.
又因为菱形两组对边的距离相等,
所以S菱形ABCD=AB·h=13h,
所以13h=120,得h=.
方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.
三、板书设计
菱形
为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,培养学生自主学习、合作学习、主动获取知识的能力,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展.
特殊平行四边形
菱形的性质与判定
第1课时 菱形的性质
教 学 目 标
1、会归纳菱形的特性并进行证明;
2、能运用菱形的性质定理进行简单的计算与证明;
3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性.
重点:菱形的性质定理证明
难点:菱形的性质定理证明、运用 ,生活数学与理论数学的相互转化.
知识链接: 平行四边形的性质与判定
一 、课前预习:
1.复习平行四边形的性质.
边:
角:
对角线:
对称性:
2.菱形的定义是什么?
___ ____
菱形是不是中心对称图形? ,对称中心是___ __
3.请动手制作一个菱形,折—折,观察并填空.
菱形是不是轴对称图形? ,对称轴有几条?_______,分别是 ___ ____
二、探索活动:
探索活动(一):
菱形是一种特殊的平行四边形,具有平行四边形的所有性质。
菱形特有的性质是(性质定理):
菱形的四条边_______ ______;菱形的对角线____ _________。
探索活动(二):
试证明上述定理
已知:_____________________________________。
求证:(1)__________________________;
(2)__________________________。
探索活动(三):
已知菱形ABCD的两条对角线AC、BD相交于点O,图中存在特殊的三角形吗?
如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为 ;周长为 面积为 )
你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?
由此可得:菱形的面积__________________________________.
由此得到菱形的两种面积计算方法:
1. _____________________________________________
2. _____________________________________________
你会计算菱形的周长吗?
三、例题精讲
例1.课本3页例1
例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.
四、课堂检测:
1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.
2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.
3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为
4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.
5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).
(A)1个 (B)2个 (C)3个 (D)4个
6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
五、学习体会:
第2课时 菱形的判定
1.理解并掌握菱形的判定方法;(重点)
2.灵活运用菱形的判定方法进行有关的证明和计算.(难点)
                   
一、情景导入
木工在做菱形的窗格时,总是保证四条边框一样长,你知道其中的道理吗?借助以下图形探索:如图,在四边形ABCD中,AB=BC=CD=DA,试说明四边形ABCD是菱形.
二、合作探究
探究点一:对角线互相垂直的平行四边形是菱形
如图所示,?ABCD的对角线BD的垂直平分线与边AB,CD分别交于点E,F.求证:四边形DEBF是菱形.
解析:本题首先应用到平行四边形的性质,其次应用到菱形的判定方法.要证四边形DEBF是菱形,可以先证明其为平行四边形,再利用“对角线互相垂直”证明其为菱形.
证明:∵四边形ABCD是平行四边形,
∴AB∥DC.
∴∠FDO=∠EBO.
又∵EF垂直平分BD,
∴OB=OD.
在△DOF和△BOE中,

∴△DOF≌△BOE(ASA).
∴OF=OE.
∴四边形DEBF是平行四边形.
又∵EF⊥BD,
∴四边形DEBF是菱形.
方法总结:用此方法也可以说是对角线互相垂直平分的四边形是菱形,但对角线互相垂直的四边形不一定是菱形,必须强调对角线是互相垂直且平分的.
探究点二:四边相等的四边形是菱形
如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
解析:根据平移的性质可得CF=AD=10cm,DF=AC,再在Rt△ABC中利用勾股定理求出AC的长为10cm,就可以根据四边相等的四边形是菱形得到结论.
证明:由平移变换的性质得CF=AD=10cm,DF=AC.
∵∠B=90°,AB=6cm,BC=8cm,
∴AC===10(cm),
∴AC=DF=AD=CF=10cm,
∴四边形ACFD是菱形.
方法总结:当四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.
探究点三:菱形的判定和性质的综合应用
如图所示,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形.
又∵EF=BE,
∴四边形BCFE是菱形;
(2)解:∵∠BCF=120°,∴∠EBC=60°,
∴△EBC是等边三角形,
∴菱形的边长为4,高为2,
∴菱形的面积为4×2=8.
方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.
三、板书设计

经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括
以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
第2时 菱形的判定
教 学
目 标
1、掌握菱形的判定定理并解决实际问题,会根据已知条件画出菱形
2、能够运用综合法证明菱形的判定定理及其推论。
3、经历探索菱形判定的过程,培养学生的动手能力、观察能力及推理能力。
重点:严格证明菱形判定定理及其推论。
难点:运用综合法解决菱形的相关题型。
知识链接: 平行四边形的性质与判定
【学习过程】
一、课前自主学习
菱形的对边 。
菱形的四边 。
菱形的性质: 菱形的对角线 。
菱形是 对称图形,又是 对称图形。
菱形的面积= 或 菱形的面积=
二、课内探索新知。
菱形的判定方法:
方法一:(定义)有一组邻边相等的平行四边形是菱形
方法二:
用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过探究,得到:对角线 的平行四边形是菱形。
证明上述结论:
已知菱形的一条对角线你会做菱形吗?试一试
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。
通过探究,得到: 的四边形是菱形。
证明上述结论:
三、例题巩固
课本6页例2
四、课堂检测
1、下列判别错误的是( )
A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形
C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.
2、下列条件中,可以判定一个四边形是菱形的是( )
A.两条对角线相等 B.两条对角线互相垂直
C.两条对角线相等且垂直 D.两条对角线互相垂直平分
3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.
4、已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F
求证:四边形AFCE是菱形