人教版数学九上21.2.2 公式法课件+视频(32张ppt)

文档属性

名称 人教版数学九上21.2.2 公式法课件+视频(32张ppt)
格式 zip
文件大小 9.6MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-06-13 07:55:45

文档简介

21.2 解一元二次方程
第二十一章 一元二次方程
导入新课
讲授新课
当堂练习
课堂小结
21.2.2 公式法
九年级数学上(RJ)
教学课件
学习目标
1.经历求根公式的推导过程.(难点)
2.会用公式法解简单系数的一元二次方程.(重点)
3.理解并会计算一元二次方程根的判别式.
4.会用判别式判断一元二次方程的根的情况.
导入新课
复习引入
1.用配方法解一元二次方程的步骤有哪几步?
2.如何用配方法解方程2x2+4x+1=0?
导入新课
讲授新课
任何一个一元二次方程都可以写成一般形式
ax2+bx+c=0
能否也用配方法得出它的解呢?
合作探究
用配方法解一般形式的一元二次方程
ax2+bx+c=0 (a≠0).
方程两边都除以a
解:
移项,得
配方,得

问题:接下来能用直接开平方解吗?
一元二次方程的求根公式
特别提醒
∵a ≠0,4a2>0,
当b2-4ac ≥0时,
∵a ≠0,4a2>0,
当b2-4ac <0时,
而x取任何实数都不能使上式成立.
因此,方程无实数根.
由上可知,一元二次方程ax2+bx+c=0 (a≠0)的根由方程的系数a,b,c确定.因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0 (a≠0) ,当b2-4ac ≥0 时,将a,b,c 代入式子
就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.
视频:求根公式的趣味记忆
例1 用公式法解方程 5x2-4x-12=0
解:∵a=5,b=-4,c=-12,
b2-4ac=(-4)2-4×5×(-12)=256>0.
典例精析
解:
这里的a、b、c的值是什么?
例3 解方程: (精确到0.001).
解:
用计算器求得:
例4 解方程:4x2-3x+2=0
因为在实数范围内负数不能开平方,所以方程无实数根.
解:
要点归纳
公式法解方程的步骤
1.变形: 化已知方程为一般形式;
2.确定系数:用a,b,c写出各项系数;
3.计算: b2-4ac的值;
4.判断:若b2-4ac ≥0,则利用求根公式求出;
若b2-4ac<0,则方程没有实数根.
两个不相等实数根
两个相等实数根
没有实数根
两个实数根
按要求完成下列表格:
练一练
0
4
有两个相等的实数根
没有实数根
有两个不相等的实数根

的值
根的
情况
3.判别根的情况,得出结论.
1.化为一般式,确定a,b,c的值.
要点归纳
根的判别式使用方法
例5:已知一元二次方程x2+x=1,下列判断正确的是( )
A.该方程有两个相等的实数根
B.该方程有两个不相等的实数根
C.该方程无实数根
D.该方程根的情况不确定
解析:原方程变形为x2+x-1=0.∵b2-4ac=1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.
B
b2 - 4ac > 0时,方程有两个不相等的实数根.
b2 - 4ac = 0时,方程有两个相等的实数根.
b2 - 4ac < 0时,方程无实数根.
例6:若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( )
A.k>-1 B.k>-1且k≠0
C.k<1 D.k<1且k≠0
解析:由根的判别式知,方程有两个不相等的实数根,则b2-4ac>0,同时要求二次项系数不为0,即 ,k≠0.解得k>-1且k≠0,故选B.
B
例7:不解方程,判断下列方程的根的情况.
(1)3x2+4x-3=0;(2)4x2=12x-9; (3) 7y=5(y2+1).
解:(1)3x2+4x-3=0,a=3,b=4,c=-3,
∴b2-4ac=32-4×3×(-3)=52>0.
∴方程有两个不相等的实数根.
(2)方程化为:4x2-12x+9=0,
∴b2-4ac=(-12)2-4×4×9=0.
∴方程有两个相等的实数根.
例7:不解方程,判断下列方程的根的情况.
(3) 7y=5(y2+1).
解:(3)方程化为:5y2-7y+5=0,
∴b2-4ac=(-7)2-4×5×5=-51<0.
∴方程有两个相等的实数根.
1.解方程:x2 +7x – 18 = 0.
解:这里 a=1, b= 7, c= -18.
∵ b 2 - 4ac =7 2 – 4 × 1× (-18 ) =121>0,

即 x1 = -9, x2 = 2 .
当堂练习
2. 解方程(x - 2) (1 - 3x) = 6.
解:去括号 ,得 x –2 - 3x2 + 6x = 6,
化简为一般式 3x2 - 7x + 8 = 0,
这里 a = 3, b = -7 , c = 8.
∵b2 - 4ac=(-7 )2 – 4 × 3 × 8 = 49–96
= - 47 < 0,
∴原方程没有实数根.
3. 解方程:2x2 - x + 3 = 0
解: 这里 a = 2 , b = - , c = 3 .
∵ b2 - 4ac = 27 - 4×2×3 = 3 > 0 ,

即 x1= x2=
4.关于x的一元二次方程 有两个实根,则m的取值范围是 .
注意:一元二次方程有实根,说明方程可能有两个不等实根或两个相等实根两种情况.
解:

5.不解方程,判断下列方程的根的情况.
(1)2x2+3x-4=0;(2)x2-x+ =0; (3) x2-x+1=0.
解:(1)2x2+3x-4=0,a=2,b=3,c=-4,
∴b2-4ac=32-4×2×(-4)=41>0.
∴方程有两个不相等的实数根.
(2)x2-x+ =0,a=1,b=-1,c= .
∴b2-4ac=(-1)2-4×1× =0.
∴方程有两个相等的实数根.
(3)x2-x+1=0,a=1,b=-1,c=1.
∴b2-4ac=(-1)2-4×1×1=-3<0.
∴方程无实数根.
(3) x2-x+1=0.
6.不解方程,判别关于x的方程
的根的情况.
解:
所以方程有两个实数根.
能力提升:
在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC 的周长.
解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实
数根,
所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.
所以b=-10或b=2.
将b=-10代入原方程得x2-8x+16=0,x1=x2=4;
将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);
所以△ABC 的三边长为4,4,5,
其周长为4+4+5=13.
课堂小结
公式法
求根公式
步骤
一化(一般形式);
二定(系数值);
三求( Δ值);
四判(方程根的情况);
五代(求根公式计算).
根的判别式b2-4ac
务必将方程化为一般形式