【基础】三角函数的应用
【学习目标】
1.熟练掌握三角函数的性质,会用三角代换解决代数、几何、函数等综合问题;
2.利用三角形建立数学模型,解决实际问题,体会三角函数是描述周期变化现象的重要函数模型.
【要点梳理】
要点一:三角函数模型的建立程序
要点二:解答三角函数应用题的一般步骤
解答三角函数应用题的基本步骤可分为四步:审题、建模、解模、结论.
(1)审题
三角函数应用题的语言形式多为文字语言和图形语言,阅读材料时要读懂题目所反映的实际问题的背景,领悟其中的数学本质,在此基础上分析出已知什么,求什么,从中提炼出相应的数学问题.
(2)建模
根据搜集到的数据,找出变化规律,运用已掌握的三角知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个三角函数问题,实现问题的数学化,即建立三角函数模型.其中要充分利用数形结合的思想以及图形语言和符号语言并用的思维方式.
(3)解模
利用所学的三角函数知识,结合题目的要求,对得到的三角函数模型予以解答,求出结果.
(4)结论
将所得结论转译成实际问题的答案,应用题不同于单纯的数学问题,既要符合科学,又要符合实际背景,因此,有时还要对于解出的结果进行检验、评判.
要点诠释:
实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.
【典型例题】
类型一:三角函数周期性的应用
例1.国际大都市上海继东方明珠电视塔、金茂大厦之后,黄浦江畔的又一座景观性、标志性、文化游乐性建筑是座落于虹口区北外滩汇山码头的“上海梦幻世界摩天轮城”,占地3.46公顷总投资超过20亿元人民币,内有世界最大的摩天轮.其中摩天轮中心距离地面200米高,直径170米.摩天轮上将安装36个太空舱,可同时容纳1100多人一览上海风光.(如图),摩天轮沿逆时针方向做匀速转动,每8分钟转一圈,若摩天轮的轮周上的点的起始位置在最低点处(即时刻分钟时的位置).已知在时刻分钟时点距离地面的高度.
(Ⅰ)求20分钟时,点距离地面的高度;
(Ⅱ)求的函数解析式.
【思路点拨】由周期,可求出距地面的高度,然后求出三角函数中的参数A,h,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(t).
【答案】(1)285(2)
【解析】设过摩天轮的中心与地面垂直的直线为,垂直于地面于点,于点,
(1)∵旋转的周期,∴20分钟后点在最高点,距地面高度是285米.
(2)分钟时,∴
∴
【总结升华】实际问题的解决要求我们在阅读材料时读懂题目所反映的实际问题的背景,领悟其中的数学本质,将问题数学化,自行假设与设计一些已知条件,提出解决方案,从而最终解决问题.
举一反三:
【变式1】如图,质点在半径为2的圆周上逆时针运动,其初始位置为(,),角速度为1,那么点到轴距离关于时间的函数图像大致为( )
/
【答案】C
类型二:三角函数模型在气象学中的应用
例2.(2018秋 江西模拟)根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布与曲线拟合(0≤x<24,单位为小时,y表示气温,单位为摄氏度,,A>0),现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高.
(1)求这条曲线的函数表达式;
(2)这天气温不低于10摄氏度的时间有多长?
【思路点拨】(1)根据气温为4至12摄氏度,我们可以求得振幅A,利用凌晨1时整气温最低,下午13时整气温最高,可求得周期及的值,从而求得函数表达式;
(2)利用(1)中求出的函数表达式,我们可建立表达式,解之即可.
【答案】(1);(2)8小时
【解析】(1)b=(4+12)÷2=8,A=12-8=4,,,
所以这条曲线的函数表达式为:.
(2)令y≥10,则,
∴,0≤x<24.
∴,
∴,
∴9≤x≤17,
∴17-9=8.
故这天气温不低于10摄氏度的时间有8小时.
【总结升华】本题以实际问题为载体,考查三角函数模型的构建,考查三角不等式的求解,解题的关键是从实际问题中抽象出函数的模型,求出相应的参数.
举一反三:
【变式1】估计某一天的白昼时间的小时数D(t)可由下式计算:,其中t表示某天的序号、t=0表示1月1日,以此类推,常数k与某地所处的纬度有关.
(1)如在波士顿,k=6,试画出函数D(t)在0≤t≤365时的图象.
(2)在波士顿哪一天白昼时间最长?哪一天白昼时间最短?
(3)估计在波士顿一年中有多少天的白昼时间超过10.5小时?
【答案】(1)略 (2) 6月20日 12月20日 (3) 243天
【解析】 (1)k=6时,.先用五点法画出的简图如图,由和,得t=79和t=444,列出下表:
t
79
170.25
261.5
352.75
444
f(t)
0
3
0
-3
0
若t=0,.
∵的周期为365,
∴.将,t∈[0,365]的图象向上平移12个单位长度,得到,0≤t≤365的图象,如图所示.
(2)白昼时间最长的一天,即D(t)取得最大值的一天,此时t=170,对应的是6月20日(闰年除外),类似地,t=353时D(t)取最小值,即12月20日白昼最短.
(3)D(t)>10.5,即,,t∈[0,365].
∴292>t>49,292-49=243.约有243天的白昼时间超过10.5小时.
类型三:三角函数模型在物理学中的应用
例3.一个单摆,如图所示,小球偏离铅垂线方向的角为rad,与时间t满足关系式.
(1)当时,的值是多少?并指出小球的具体位置;
(2)单摆摆动的频率是多少?
(3)小球偏离铅垂线方向的最大摆角是多少?
【思路点拨】(1)根据已知条件中的函数解析式,把代入,即可求出摆角.(2)由可求出频率.(3)求最大摆角,先求出的最大值为1,然后求角.
【答案】(1)0(2)(3)rad
【解析】
(1)当时,,这时小球恰好在平衡位置;
(2)因为单摆摆动的周期,所以频率;
(3)令t=0,得的最大值为1.故有最大值rad,即小球偏离铅垂线方向的最大摆角是rad.
举一反三:
【变式1】(2018 哈尔滨三模)单摆从某点开始来回摆动,它相对于平衡位置O的位移S(厘米)和时间t(秒)的函数关系为:(A>0,ω>0,),已知单摆每分钟摆动4次,它到平衡位置的最大位移为6厘米,摆动起始位置相对平衡位置的位移为3厘米.求:
(1)S和t的函数关系式;
(2)第2.5秒时单摆的位移.
【答案】(1);(2)
【解析】(1)单摆每分钟摆动4次,函数的周期为:,解得,
它到平衡位置的最大位移为6厘米,A=6,
摆动起始位置相对平衡位置的位移为3厘米,说明函数的图象经过(0,3),
∴,,∴.
S和t的函数关系式:.
(2)第2.5秒时单摆的位移.
第2.5秒时单摆的位移为:.
例4.交流电的电压E(单位:伏)与时间t(单位:秒)的关系可用来表示,求:
(1)开始时的电压;
(2)电压值重复出现一次的时间间隔;
(3)电压的最大值和第一次获得这个最大值的时间.
【答案】(1)(2)0.02(3)
【解析】
(1)当t=0时,(伏),即开始时的电压为伏;
(2)(秒),即电压重复出现一次的时间间隔为0.02秒;
(3)电压的最大值为伏,当,
即秒时第一次取得这个最大值.
【巩固练习】
1.已知A ,B ,C是△ABC的三个内角, 且sinA>sinB>sinC,则( )
A.A>B>C B.A D.B+C >
2.在平面直角坐标系中,已知两点A(cos800,sin800),B(cos200,sin200),则|AB|的值是 ( )
A. B. C. D.1
3.02年北京国际数学家大会会标是由四个相同的直角三角形与中间的小
正方形拼成的一个大正方形,若直角三角形中较小的锐角为θ,大正方形的
面积为1,小正方形的面积是,则sin2θ-cos2θ的值是 ( )
A.1 B. C. D.
4.D、C、B三点在地面同一直线上,DC=a,从C、D两点测得A点的仰角
分别是α、 β(α>β),则A点离地面的高度等于 ( )
A. B. C. D.
5.单摆从某点开始来回摆动,离开平衡位置O的距离s cm和时间t s的函数关系式为:,那么单摆来回摆动一次所需的时间为( )
A.2πs B.πs C.0.5 s D.1 s
6.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为
的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为
A.; B.
C.; D.
7.如图甲,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为,弦AP的长为d,则函数的图象大致是( )
/
8.(2018春 福建南安市期中)如图,某大风车的半径为2 m,每6 s旋转一周,它的最低点O离地面0.5 m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m),则函数h=f(t)的关系式( )
/
A. B.
C. D.
9.(2018春 苏州期末)某地一天6时至20时的温度变化近似满足函数,(x∈[6,20]),其中x表示时间,y表示温度,设温度不低于20,某人可以进行室外活动,则此人在6时至20时中,可以进行室外活动的时间约为________小时.
10.如图,是一弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是________.
11.甲、乙两楼相距60米,从乙楼望甲楼顶的仰角为45°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高度分别为________.
12.平静的水面上,扔下一个小石子,我们会看到:水波每隔一段时间会重复出现.如果从局部来看,可以近似地视为正弦型曲线.2004年12月26日,印度尼西亚苏门答腊岛附近海域发生地震,并引发大规模的海啸.若某次海啸的周期为7.2小时,以200 m/s的速度涌向岸边,浪高达到80 m,试求出此次海啸的函数解析式,并画出其波形示意图.
13.(2018秋 南京月考)如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为8 cm,圆环的圆心O距离地面的高度为10 m,蚂蚁每12分钟爬行一圈,若蚂蚁的起始位置在最低点处
(1)试确定在时刻t(min)时蚂蚁距离地面的高度h(m)
(2)在蚂蚁绕圆环爬环的一圈内,有多长时间蚂蚁距离地面超过14 m?
【答案与解析】
1.【答案】A
2.【答案】D
【解析】因为
=
3.【答案】D
【解析】由题意,大正方形的边长为1,小正方形的边长为,设所对的直角边为
则由勾股定理得:,解得,,,进一步求得,所以,故选D.
4. 【答案】A
【解析】,,化简整理得:,故选A.
5.【答案】D
【解析】周期(s).
6.【答案】A
【解析】八边形的面积=
7.【答案】C
【解析】当为时,∠AOP=(弧度),过O作OD⊥AP.则,∴d=2sin.
8.【答案】C
【解析】设或,
∵大风车每6 s旋转一周,
∴周期T=6,即,解得,排除A,B.
则或,
∵大风车的半径为2 m,它的最低点O离地面0.5 m,
∴函数的最小值为0.5,最大值为4.5,
则A+k=4.5,―A+k=0.5,
解得A=2,k=2.5,
当t=0时,f(0)=0.5为最小值,
若,则当t=0时,y=―cos0+2.5=2.5―2=0.5满足条件.
若,则当t=0时,y=―2sin0+2.5=2.5―0=2.5不满足条件.排除D.
故选:C.
9.【答案】8
【解析】由题意,
∴
∴
∴16k-6≤x≤16k+2,
∵x∈[6,20],
∴10≤x≤18
∴此人在6时至20时中,可以进行室外活动的时间约为18-10=8小时
故答案为:8
10.【答案】
【解析】A=2,T=2(0.5-0.1)=0.8,∴,
将点(0.1,2)代入,得.
11.【答案】60米,米
【解析】如图甲楼的高度AC=AB=60米,
在Rt△CDE中,.
∴乙楼的高度为米.
12.【解析】设函数解析式为,由题意知,,令t=0时,,所以函数解析式为.波形示意图如图所示.
/
13.【答案】(1);(2)4分钟.
【解析】(1)设在时间t(min)时蚂蚁达到点P,由OP在t分钟内所转过的角为,可知以Ox为始边,OP为终边的角为,
则P点的纵坐标为,
则,
∴
(2)
因为所研究的问题在蚂蚁绕圆环爬行的一圈内,故不妨令t∈[0,12],
∴4≤t≤8
所以在蚂蚁绕圆环爬行的一圈内,有4分钟时间蚂蚁距离地面超过14 m.
故答案为:(1)
(2)4分钟.