2.12 科学记数法
一、基本目标
【知识与技能】
1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算.
2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.
二、重难点目标
【教学重点】
正确运用科学记数法表示较大的数.
【教学难点】
正确掌握10的幂指数特征.
三、教学目标
一、复习引入:
1.什么叫乘方?说出103,―103,(―10)3、an的底数、指数、幂。
2. 把下列各式写成幂的形式:
×××; ;-×××;。
3.计算:101,102,103,104,105,106,1010。
? 由第3题计算:105=10000,106=1000000,1010=10000000000,左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等等。又如像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法。
二、讲授新课:
1.10n的特征
观察第3题:101=10,102=100,103=1000,104=10000,…1010=10000000000。
提问:10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?
(1)10n=,n恰巧是1后面0的个数;(2) 10n=,比运算结果的位数少1。?
反之,1后面有多少个0,10的幂指数就是多少,如=107。
2.练习:
(1)把下面各数写成10的幂的形式:1000,100000000,100000000000。?
(2)指出下列各数是几位数:103,105,1012,10100。?
3.科学记数法:
(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式。
如:100=1×100=1×102;600=6×1000=6×103;7500=7;5×1000=7.5×103。?
第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1000,变成10的n次幂的形式就行了。?
(2)科学记数法定义:
根据上面例子,我们把大于10的数记成a×10n的形式,其中a的整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法。现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法。说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用。
一般地,把一个大于10的数记成a×的形式,其中a 是整数数位只有一位的数(即1≤a<10),n是正整数,这种记数法叫做科学记数法。
4.例题:
例1:用科学记数法记出下列各数:
(1)696 000; (2)1 000 000; (3)58 000; (4)―7 800 000。
解:(1)原式=6.96×105;(2) 原式=106;(3) 原式=5.8×104;(4) 原式=―7.8×106。
5.思考:
用科学记数法表示一个数时,10的指数与原数的数位位数有什么关系?和同学讨论一下,再举几个数验证你的猜想是否正确。
6.课堂练习: 课本:P60:1,2。
三、课堂小结:
1.指导学生看书;2.强调什么是科学记数法,以及为什么学习科学记数法;3.突出科学记数法中字母a的规定及10的幂指数与原数整数位数的关系。