高中数学必修二知识讲解,巩固练习(复习补习,期末复习资料):02【提高】空间几何体的结构

文档属性

名称 高中数学必修二知识讲解,巩固练习(复习补习,期末复习资料):02【提高】空间几何体的结构
格式 zip
文件大小 939.5KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2019-07-02 08:48:04

图片预览

文档简介

空间几何体的结构
【学习目标】
1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球的结构特征;
2.认识由柱、锥、台、球组成的几何组合体的结构特征;
3.能用上述结构特征描绘现实生活中简单物体的结构.
【要点梳理】
要点一:棱柱的结构特征
1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.
2、棱柱的分类:底面是三角形、四边形、五边形、……的棱柱分别叫做三棱柱、四棱柱、五棱柱……
3、棱柱的表示方法:
①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、、;
②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等.
4、棱柱的性质:棱柱的侧棱相互平行.
要点诠释:
有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱.如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边形”这一条件,但它不是棱柱.
判定一个几何体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱.
要点二:棱锥的结构特征
1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;
2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 ……;
3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥.
要点诠释:
棱锥有两个本质特征:
(1)有一个面是多边形;
(2)其余各面是有一个公共顶点的三角形,二者缺一不可.
要点三:圆柱的结构特征
1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.
2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱
要点诠释:
(1)用一个平行于圆柱底面的平面截圆柱,截面是一个与底面全等的圆面.
(2)经过圆柱的轴的截面是一个矩形,其两条邻边分别是圆柱的母线和底面直径,经过圆柱的轴的截面通常叫做轴截面.
(3)圆柱的任何一条母线都平行于圆柱的轴.
要点四:圆锥的结构特征
1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.
垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.
2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥.
要点诠释:
(1)用一个平行于圆锥底面的平面去截圆锥,截面是一个比底面小的圆面.
(2)经过圆锥的轴的截面是一个等腰三角形,其底边是圆锥底面的直径,两腰是圆锥侧面的两条母线.
(3)圆锥底面圆周上任意一点与圆锥顶点的连线都是圆锥侧面的母线.
要点五:棱台和圆台的结构特征
1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.
2、棱台的表示方法:用各顶点表示,如四棱台;
3、圆台的表示方法:用表示轴的字母表示,如圆台;
要点诠释:
(1)棱台必须是由棱锥用平行于底面的平面截得的几何体.所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点.
(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方.
(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.
(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方.
要点六:球的结构特征
1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.
2、球的表示方法:用表示球心的字母表示,如球O.
要点诠释:
(1)用一个平面去截一个球,截面是一个圆面.如果截面经过球心,则截面圆的半径等于球的半径;如果截面不经过球心,则截面圆的半径小于球的半径.
(2)若半径为的球的一个截面圆半径为,球心与截面圆的圆心的距离为,则有.
要点七:特殊的棱柱、棱锥、棱台
特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;
特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;
特殊的棱台:由正棱锥截得的棱台叫做正棱台;
注:简单几何体的分类如下表:
要点八:简单组合体的结构特征
1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;
2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.
①多面体与多面体的组合体
由两个或两个以上的多面体组成的几何体称为多面体与多面体的组合体.如下图(1)是一个四棱柱与一个三棱柱的组合体;如图(2)是一个四棱柱与一个四棱锥的组合体;如图(3)是一个三棱柱与一个三棱台的组合体.

②多面体与旋转体的组合体
由一个多面体与一个旋转体组合而成的几何体称为多面体与旋转体的组合体如图(1)是一个三棱柱与一个圆柱组合而成的;如图(2)是一个圆锥与一个四棱柱组合而成的;而图(3)是一个球与一个三棱锥组合而成的.

③旋转体与旋转体的组合体
由两个或两个以上的旋转体组合而成的几何体称为旋转体与旋转体的组合体.如图(1)是由一个球体和一个圆柱体组合而成的;如图(2)是由一个圆台和两个圆柱组合而成的;如图(3)是由一个圆台、一个圆柱和一个圆锥组合而成的.

要点九:几何体中的计算问题
几何体的有关计算中要注意下列方法与技巧:
(1)在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关.
(2)正四棱台中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中.另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来.
(3)研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系.
(4)圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一.
(5)圆台问题有时需要还原为圆锥问题来解决.
(6)关于球的问题中的计算,常作球的一个大圆,化“球”为“圆”,应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化“空间”为平面.
【经典例题】
类型一:简单几何体的结构特征
例1.判断下列说法是否正确.
(1)棱柱的各个侧面都是平行四边形;
(2)一个n(n≥3)棱柱共有2n个顶点;
(3)棱柱的两个底面是全等的多边形;
(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.
【答案】(1)(2)(3)正确,(4)不正确.
【解析】 (1)由棱柱的定义可知,棱柱的各侧棱互相平行,同一个侧面内两条底边也互相平行,所以各侧面都是平行四边形.(2)一个n棱柱的底面是一个n边形,因此每个底面都有n个项点,两个底面的顶点数之和即为棱柱的顶点数,即2n个.(3)因为棱柱同一个侧面内的两条底边平行且相等,所以棱柱的两个底面的对应边平行且相等,故棱柱的两个底面全等.(4)如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,但其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.
故(1)(2)(3)正确,(4)不正确.
【总结升华】解决这类与棱柱、棱锥、棱台有关的命题真假判定的问题,其关键在于准确把握它们的结构特征,也就是要以棱柱、棱锥、棱台概念的本质内涵为依据,以具体实物和图形为模型来进行判定.
举一反三:
【变式1】如下图中所示几何体中是棱柱有( )

A.1 B.2个 C.3个 D.4个
【答案】C
例2.有下面五个命题:
(1)侧面都是全等的等腰三角形的棱锥是正棱锥;
(2)侧棱都相等的棱锥是正棱锥;
(3)底面是正方形的棱锥是正四棱锥;
(4)正四面体就是正四棱锥;
(5)顶点在底面上的射影既是底面多边形的内心,又是底面多边形的外心的棱锥必是正棱锥.
其中正确命题的个数是( ).
A.1个 B.2个 C.3个 D.4个
【答案】A
【解析】本题主要考查正棱锥的概念,关键看是否满足定义中的两个条件.
命题(1)中的“各侧面都是全等的等腰三角形”并不能保证底面是正多边形,也不能保证顶点在底面上的射影是底面的中心,故不是正棱锥,如下图(1)中的三棱锥S-ABC,可令SA=SB=BC=Ac=3,SC=AB=1,则此三棱锥的各侧面都是全等的等腰三角形,但它不是正三棱锥;命题(2)中的“侧棱都相等”并不能保证底面是正多边形,如下图(2)中的三棱锥P-DEF,可令PD=PE=PF=1,,EF=1,三条侧棱都相等,但它不是正三棱锥;命题(3)中的“底面是正方形的棱锥”,其顶点在底面上的射影不一定是底面的中心,如下图(3),从正方体中截取一个四棱锥D1-ABCD,底面是正方形,但它不是正四棱锥;命题(4)中的“正四面体”是正三棱锥.三棱锥中共有4个面,所以三棱锥也叫四面体.四个面都是全等的正三角形的正三棱锥也叫正四面体;命题(5)中的“顶点在底面上的射影既是底面多边形的内心,又是外心”,说明了底面是一个正多边形,符合正棱锥的定义.

举一反三:
【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.
【答案】不正确
【解析】如图所示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥.
例3.判断下图所示的几何体是不是台体?为什么?

【解析】 三个图都不是台体.(1)AA1,DD1交于一点,而BB1,CC1交于另一点,此图不能还原成锥体,故不是台体:(2)中面ABCD与面A1B1C1D1不平行,故也不是台体;(3)中应⊙O与⊙O1不平行,故也不是台体.
【总结升华】判断一个几何体是否为台体,必须紧扣台体的两个本质特征:(1)由锥体截得的;(2)截面平行于锥体的底面.即棱台的两底面平行,且侧棱必须相交于同一点;圆台的两底面平行,且两底面圆心的连线与两底面垂直.
举一反三:
【变式1】判断如下图所示的几何体是不是台体?为什么?

【答案】①②③都不是台体.
【解析】因为①和③都不是由棱锥所截得的,故①③都不是台体;虽然②是由棱锥所截,但截面不和底面平行,故不是台体.只有用平行于锥体底面的平面去截锥体,底面与截面之间的部分才是台体.④是一个台体,因为它是用平行于圆锥SO底面的平面截圆锥SO而得的.
类型二:几何体中的基本计算
例4.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.
【答案】14 cm,,7 cm和21 cm.
【解析】圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm和3x cm,延长交的延长线于点S.
在Rt△SOA中,∠ASO=45°,则∠SAO=45°.
∴SO=AO=3x cm,.∴ ,解得x=7,∴圆台的高,母线长,底面半径分别为7 cm和21 cm.
【总结升华】对于这类旋转体的有关计算问题,其关键在于作出它们的轴截面(即过旋转铀的截面),再把它们转化为平面几何问题即可.
举一反三:
【变式1】已知圆台的上、下底面积之比为1:9,圆台的高为10,求截得圆台的圆锥的高.
【答案】15
【解析】设圆锥的高为,上、下底半径为.
则,解得.
类型三、简单几何体的组合体
例5.(1)一个正方体内接于一个球,过球心作一截面,如下图所示,则截面可能的图形是( )

A.①③ B.②④ C.①②③ D.②③④
(2)如右图所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和.
【答案】(1)C;(2).
【解析】(1)当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.
(2)此题的关键在于作截面.球不可能与边AB、CD相切,一个球在正方体内,一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如右图所示的截面图.球心O1和O2在AC上,过O1、O2分别作AD、BC的垂线交于E、F两点.设小球半径为r,大球半径为R.
则由AB=1,,得,,
∴.∴.
【总结升华】作适当的截面是解决球与其他几何体形成的组合体问题的关键.
举一反三:
【变式1】 圆锥底面半径为1cm,高为,其中有一个内接正方体,求这个内接正方体的棱长.
【答案】
【解析】过圆锥的顶点S和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面,如图所示.
设正方体棱长为x,则.
作SO⊥EF于O,则,OE=1,
∵ △ECC1∽△EOS, ∴ ,即.
∴ ,即内接正方体棱长为
【总结升华】此题也可以利用△SCD∽△SEF而求.两个几何体相接、相切的问题,关键在于发现一些截面之间的图形关系.常常是通过分析几个轴截面组合的平面图形中的一些相似,利用相似比列出方程而求.注意截面图形中各线段长度的计算.
类型四、简单几何体的表面展开与折叠问题
例6.长方体ABCD-A1B1C1D1(如图)中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C.来获取食物,试画出它的最短爬行路线,并求其路程的最小值.

【答案】
【解析】 把长方体的部分面展开,如右图所示.
对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为、、,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内到F到C1,其最短路程为.
【总结升华】在几何体表面求最短路径问题,就是要“化折为直”,因此需要把几何体表面展开,本题注意要分三种情况讨论.
举一反三:
【变式1】如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?
【答案】
【解析】把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.
∵ ,为底面圆的周长,且,
∴ ,
即蚂蚁爬行的最短距离为.
例7.根据下图所给的平面图形,画出立体图形.

【解析】 将各平面图形折起后形成的空间图形如下图所示.

【总结升华】平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程).这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并能准确地画出折叠和展开前后的平面图形和立体图形,找到这两个图形之间的构成关系.
举一反三:
【变式1】(2017春 吉林期末)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )
A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)
【答案】B
【解析】(1)图还原后,①⑤对面,②④对面,③⑥对面;
(2)图还原后,①④对面,②⑤对面,③⑥对面;
(3)图还原后,①④对面,②⑤对面,③⑥对面;
(4)图还原后,①⑥对面,②⑤对面,③④对面;
综上,可得还原成正方体后,其中两个完全一样的是(2)(3),
故选:B.
【巩固练习】
1.下列说法中正确的是( )
A.棱柱中两个互相平行的平面一定是棱柱的底面
B.棱柱的面中,至少有两个面互相平行
C.棱柱中一条侧棱的长叫棱柱的高
D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形
2.下列说法正确的是(  )
A.直角三角形绕一边旋转得到的旋转体是圆锥
B.夹在圆柱的两个截面间的几何体还是一个旋转体
C.圆锥截去一个小圆锥后剩余部分是圆台
D.通过圆台侧面上一点,有无数条母线
3.下面的图形可以构成正方体的是( )
4.在正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点,那么,正方体过P、Q、R的截面是( )
A.三角形 B.四边形 C.五边形 D.六边形
5.(2017春 湖南月考)一个长方体底面为正方形且边长为4,高为h,若这个长方体能装下8个半径为1的小球和一个半径为2的大球,则h的最小值为( )
A.8 B. C. D.6
6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.
7.圆台两底面半径分别是2 cm和5 cm,母线长是3 cm,则它的轴截面的面积是________.
8.已知地球半径为,北纬纬线的长度为 。
9.三棱柱的底面为正三角形,侧面是全等的矩形,内有一个内切球,已知球的半径为R,则这个三棱柱的底面边长为________.
10.(2017 上海嘉定区模拟)如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个高为x的圆柱.
(1)用x表示此圆柱的侧面积表达式;
(2)当此圆柱的侧面积最大时,求此圆柱的体积.
11.正四棱锥(棱锥底面是正方形,侧面都是全等等腰三角形)有一个内接正方体,它的顶点分别在正四棱锥的底面内和侧棱上.若棱锥的底面边长为a,高为h,求内接正方体的棱长.
12.如图所示为长方体ABCD—A′B′C′D′,当用矩形BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.
【答案与解析】
1.【答案】B
【解析】棱柱中也存在互相平行的侧面,故A错;棱柱上、下底面的距离叫棱柱的高,若侧棱与底面垂直,则侧棱长即为高;若侧棱与底面不垂直,则侧棱长就不是棱柱的高,故C错;长方体是棱柱,其底面为平行四边形,故D错.综上.选B.
2.【答案】C
【解析】圆锥是直角三角形绕直角边旋转得到的,如果绕斜边旋转就不是圆锥,A不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体,故B不正确,通过圆台侧面上一点,有且只有一条母线,故D不正确.
故选C
3.【答案】C
【解析】 由平面图形折叠成正方形可知,选C.
4.【答案】D
【解析】 如答图3,取C1D1的中点H,连接HR,则,再取B1B与D1D的中点M、N,则多边形HNQPMR是正六边形.
5.【答案】B
【解析】∵小球半径为1,下面放4个小球,中间放大球,上面再放4个小球,这相h才能最小,
下面4个小球的4个圆心跟中间大球的圆心形成一个四棱锥,
这四棱锥的四棱锥底面是个边长为2的正方形,对角线的一半是,斜边是3,
∴这个四棱锥的高,
∴h的最小值.
故选:B.
6.【答案】①②
7.【答案】63
【解析】画出轴截面,如下图,过A作AM⊥BC于M,则BM=5-2=3(cm),(cm),∴。

8.【答案】
【解析】设北纬60度纬线圈上任一点为A,地心为,A引线垂直于地轴交于,则直角三角形中∠为60度,故 ,而为地球半径长度,所以AB=R/2,故该纬度纬线周长为。
9.【答案】
【解析】由题意可知,球内接于正三棱柱的截面图是一个半径为的圆内接于正三角形,故可求得正三角形的边长为,即这个三棱柱的底面边长为。
10.【答案】(1)(0<x<2);(2)π
【解析】(1)设圆柱的半径为r,则,∴r=2-x,0<X<2.
∴2πrx=2π(2―x)x=.(0<x<2).
(2),
∴当x=1时,S圆柱侧取最大值2π,
此时,r=1,所以.
11.【解析】作截面,利用相似三角形知识,设正方体的棱长为x,则,解得.
12.【答案】详见解析
【解析】截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.
它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.
EF,B′C′,BC是侧棱,
截面BCFE左侧部分也是棱柱.
它是四棱柱ABEA′—DCFD′.
其中四边形ABEA′和四边形DCFD′是底面.
A′D′,EF,BC,AD为侧棱.